

Basis of Design Report

Sippo Creek Reservoir Dam Lowering Project Stark County, Ohio

City of Massillon

Project Reference: ODNR File #0614-012 Project Number: 60439145

June 2, 2017

Gregory A. McCue Civil Engineer IV Engineering Manager City of Massillon 151 Lincoln Way East Massillon, Ohio 44646 Prepared for:

Gregory A. McCue Civil Engineer IV Engineering Manager City of Massillon 151 Lincoln Way East Massillon, Ohio 44646

Prepared by:

AECOM 564 White Pond Dr Akron OH, 44320 USA aecom.com

Copyright © 2016 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Project Description	6
	1.1 Existing Conditions	6
	1.1.1 Survey and Topography	7
	1.2 Project Goals	7
2.	Permitting and Project Requirements	9
	2.1 ODNR Dam Improvements Permit	9
	2.2 Stormwater and Erosion and Sediment Control	9
3.	Recommended Design	10
	3.1 Overview	10
	3.2 Primary Spillway and Dam Modifications	10
	3.3 Overtopping Protection	11
	3.4 Grouted Riprap Outlet Channel	11
4.	Geotechnical Engineering	12
	4.1 Geotechnical Exploration	12
	4.1.1 Exploratory Soil Borings	12
	4.1.2 Geologic Setting	13
	4.1.3 Site Subsurface Conditions	14
	4.1.4 Results of Laboratory Testing	14
	4.1.5 Groundwater Conditions	15
	4.2 Slope Stability Analysis	16
	4.2.1 Seismic Load	17
	4.2.2 Material Parameters	
	4.2.3 Results	19
	4.3 Geotechnical Conclusions	19
5.	Hydrologic and Hydraulic (H&H) Engineering	20
	5.1 Hydrologic Evaluation	20
	5.1.1 HydroCAD Modeling	20
	5.2 Hydraulic Design	24
	5.2.1 HEC-RAS Modeling	24
	5.2.2 Grouted Riprap Outlet Channel	27
	5.2.3 TRM	
6.	Structural Engineering	30
7.	Bibliography	31

Figures

Figure 4-1: Base Crest Acceleration of Earthen Dams (Harder, 1991)	. 18
Figure 4-2: Variation of Maximum Acceleration Ratio (Makdisi and Seed, 1978)	. 18
Figure 5-1: HydroCAD Model Routing Diagram	. 21
Figure 5-2: Type II 24-hr Distribution	. 22
Figure 5-3: HydroCAD 10-yr Storm Design Results	.23

Figure 5-4: HydroCAD 100-yr Storm Design Results	. 24
Figure 5-5: HEC-RAS Model Schematic	. 25
Figure 5-6: HEC-RAS Steady State Flow Analysis Profile Plot	. 26

Tables

Table 4-1: Summary of Subsurface Exploration Boring Locations	12
Table 4-2: Summary of Laboratory Testing Program	15
Table 4-3: Summary of Exploration Groundwater Measurements	15
Table 4-4: Summary of Material Parameters used in Stability Analysis	19
Table 5-1: NOAA Precipitation Frequency for Massillon Ohio (24-hr Duration)	22
Table 5-2: Modeled Manning's Values	25
Table 5-3: HEC-RAS Maximum Velocity Results	27
Table 5-4: Riprap Outlet Channel Calculation Results	27
Table 5-5: Grouted Riprap Outlet Channel Calculation Results	28

Appendices

- Appendix A Geotechnical Engineering
- Appendix B Hydrologic and Hydraulic (H&H) Engineering
- Appendix C Structural Engineering
- Appendix D Draft Design Drawings (Attached)

List of Acronyms

ASCE American Society of Civil Engineers bgs Below existing ground surface BOD Basis of Design Report	
bgsBelow existing ground surfaceBODBasis of Design Report	
BOD Basis of Design Report	
BMP Best Management Practice	
cfs Cubic feet per second	
fps Feet per second	
GIS Geographic Information System	
H&H Hydrologic & Hydraulic	
HEC-RAS Hydraulic Engineering Center River Analysis Syst	эm
IDF Inflow Design Flood	
LiDAR Light Detection and Ranging	
NAVD 88 North American Vertical Datum of 1988	
NEH National Engineering Handbook	
NOI Notice of Intent	
NRCS Natural Resources Conservation Service	
ODNR Ohio Department of Natural Resources	
ODOT Ohio Department of Transportation	
OEPA Ohio Environmental Protection Agency	
pcf Pounds per cubic foot	
PGA Peak Ground Acceleration	
PMF Probable Maximum Flood	
psf Pounds per square foot	
psi Pounds per square inch	
SCS Soil Conservation Service	
SEI Structural Engineering Institute	
SPT Standard Penetration Test	
SWCD Stark Soil Water Conservation District	
SWPPP Stormwater Pollution Prevention Plan	
TRM Turf Reinforcement Matting	
WSE Water Surface Elevation	

1. **Project Description**

Sippo Creek Reservoir (Reservoir) is located in the City of Massillon, in west central Stark County, Ohio, east of the Tuscarawas River and State Route 21 and west of Interstate 77. A sit location map is included on **Sheet 01** of the draft design drawings. All sheets referenced in this document are provided as **Appendix D** (attached). Sippo Creek Reservoir Dam (Dam) is an earthen dam approximately 19 feet high and 265 feet long, and was built between 1875 and 1896 by the Massillon Water Works Supply Company to supply water to the City. The Massillon Water Works Supply Company is defunct and no longer supplies water to the City; the City now owns the dam and the surrounding park. The Ohio Department of Natural Resources (ODNR), the Dam regulatory agency, has assigned the Dam ODNR File No. 0614-012.

DRAFT

Should a failure occur at the Dam, breach outflow and extents of flooding will likely result in probably loss of human life. Therefore, ODNR has categorized this Dam as Class I. A Class I dam is required by ODNR to safely store and/or pass flows generated from 100% of the Probable Maximum Flood (PMF) without failure.

The City of Massillon has elected to remove the Dam from ODNR regulations and future permitting requirements by reducing the category from Class I to Class IV. By lowering the category of the Dam to Class IV, the inflow design flood (IDF) decreases from 100% of the PMF to the 100-year storm.

On April 7, 2017 correspondence between ODNR and AECOM discussed design criteria and proposed improvements for the Dam. ODNR has requested that the design allow flows generated by the 10-year storm to discharge through the primary spillway without overtopping. Furthermore, ODNR has requested that the design include overtopping protection and downstream erosion control measures to safely pass flows generated by the 100-year storm without failure to the Dam.

AEOCM developed a design to partially lower the Dam and primary spillway, install overtopping protection, and prevent erosion downstream, while satisfying the requested design criteria specified by ODNR. In the post construction condition, the Dam will be twenty-feet or less in height with a total storage volume of fifty acre-feet or less. By definition, the Dam will be categorized as Class IV by ODNR, satisfying the project goals for the City of Massillon.

AECOM has prepared this Basis of Design (BOD) Report to illustrate the proposed improvements and modifications with supporting engineering analysis and calculations for the design.

1.1 Existing Conditions

The Reservoir is located at the lower end of the drainage area of Sippo Creek, a tributary of the Tuscarawas River. The Reservoir is used for recreational purposes, has a surface area of approximately 7.0 acre in size at normal pool (1,001.64 ft.), and impounds 82.2 acre-feet at the crest of the dam (1,004.2 ft.). All elevations in this report reference the North American Vertical Datum of 1988 (NAVD 88) unless otherwise specified. The dam has a 50 foot wide stone block overflow weir that serves as the

primary spillway. The weir discharges onto a series of small stone steps and onto a stone pad, providing energy dissipation. A lake drain pipe emerges from the stone steps and lies on the floor of the stone pad. The receiving channel returns to its natural width about 150 feet downstream of the Dam, where a small pedestrian bridge crosses the creek. The Dam is not equipped with an emergency spillway.

AECOM gathered information from site visits, surveys, subsurface investigations, and public records to assist with the design.

1.1.1 Survey and Topography

Ground surveys were performed by AECOM in August 2011 and again in September 2015. The surveys included the primary spillway, topography of the surrounding area, utilities, and other structures downstream of the Dam. Utility locations unable to be surveyed were provided by the City of Massillon and Ohio Edison. The vertical datum for each survey referenced NAVD 88 and the horizontal control is the Ohio State Plane Coordinate System NAD 1983, North Zone, U.S. Foot. Topographical mapping was generated using a Digital Elevation Model created by points developed from Light Detection and Ranging methods, dated 2007 and supplemented with the data from the ground surveys.

Once AECOM gathered all of the survey and available topographical information, an existing basemap was generated for the project. The basemap was utilized throughout the analysis and design process to successfully accomplish project goals.

1.2 Project Goals

The primary goal of this project is to develop construction level drawings and calculations in order to install the proposed improvements and modifications to existing features of the design. Below is a list of the proposed improvements that make up the design:

- Remove top courses of the primary spillway abutment walls down to approximate elevation of 998.6 ft.
- Remove four courses of stone in the primary spillway down to approximate elevation of 995.6 ft.
- Cascade existing core wall and maintain a minimum of 6-inches below final grade.
- Regrade dam crest to include a 5-foot bench out from each abutment that transitions to a 6H:1V slope up to existing grade.
- Install Turf Reinforcement Matting (TRM) on the upstream face of the dam that extends to the downstream toe.
- Construct a grouted riprap outlet channel downstream of the existing stone pad.

Analyses and calculations provided in this BOD include the following:

Geotechnical Engineering

- ✓ Geotechnical Exploration
- ✓ Slope Stability Analysis
- > Hydrologic and Hydraulic (H&H) Engineering
 - ✓ Hydrologic (HydroCAD) Modeling
 - ✓ Hydraulic Engineering Center River Analysis System (HEC-RAS) Modeling
 - ✓ Riprap Outlet Channel Design
 - ✓ TRM Design
- Structural Engineering
 - ✓ Structural Analysis

This BOD is intended to support the design of the proposed improvements and accompanies the design drawing set, *Sippo Creek Reservoir Dam Lowering, Draft Design Drawings*, provided as **Appendix D**.

2. Permitting and Project Requirements

Permitting of the proposed modifications is required by ODNR, Division of Soil and Water Resources, Ohio Dam Safety Program. Permits will need to be obtained prior to implementing the proposed improvements. Project permitting and ODNR requirements are presented in the following sections.

2.1 ODNR Dam Improvements Permit

Any improvements to dams that are regulated by the Ohio Department of Natural Resources must obtain a permit for the improvements, prior to any construction per Ohio Revised Code 1521.062 and Ohio Administrative Code 1501:21-21-03. The proposed improvements have been designed to allow for the IDF to be passed and/or stored without failure. This BOD represents the application for the ODNR permit to construct the design discussed herein.

2.2 Stormwater and Erosion and Sediment Control

The Ohio Environmental Protection Agency (OEPA) requires that a Stormwater Pollution Prevention Plan (SWPPP) and a Notice of Intent (NOI) be prepared for a construction project that plans to disturb 1-acre or more of land. The limit of disturbance for this project is less than half an acre, by definition a SWPPP and NOI is not required.

The Stark Soil and Water Conservation District (SWCD) protects the county's resources by following the Stark County Water Management and Sediment Control Regulations, amended in 2008. The SWCD ensures that proper erosion and sediment control and stormwater measures are in place throughout a construction project, also known as Best Management Practices (BMP's). The SWDC has authority to stop work while performing construction site inspections, if BMP's are not installed or maintained correctly. AECOM plans to submit a final copy of the construction drawings as a preconstruction notification to the SWCD for approval of the proposed BMP's.

3. Recommended Design

Selection of the recommended design for the proposed improvements and modifications of existing features to the Dam is a result of the owner electing to remove the Dam from ODNR regulations and future permitting requirements as well as the ODNR requested design criteria, discussed with AECOM in April, 2017.

This section describes the components that make the Sippo Creek Reservoir Dam Lowering Design Project.

3.1 Overview

To meet project goals and the requested design criteria, modifications to the Dam and primary spillway a construction of new improvements are required. Design criteria discussed with ODNR include the following:

- The primary spillway must allow flows generated by the 10-year storm to pass through without overtopping the Dam.
- The Dam must safely store and/or pass flows generated by the 100-year storm without failure.

Lowering the Dam and primary spillway to reduce its ODNR category also reduces its capacity. For the design, it is anticipated that flows generated by storms larger than the 10-year will likely overtop the Dam. Installation of overtopping protection and erosion control measures are required.

The following subsequent sections describe the multiple components that make up the design.

3.2 Primary Spillway and Dam Modifications

Primary spillway and Dam modifications are required to remove the Dam from ODNR regulations and future permitting as well as satisfy the requested design criteria from ODNR. Top courses of the primary spillway abutment walls on each side are to be removed down to an approximate elevation of 998.6 ft. Four courses of stone from the primary spillway are to be removed down to an approximate elevation of 998.6 ft. Four courses of 995.6 ft. The estimated 10-year water surface elevation (WSE) in the Reservoir is 998.5 ft., allowing the flows generated by the 10-year storm to pass through the primary spillway without overtopping the Dam.

The existing core wall will be modified to cascade from the abutment walls to existing grade on each side. Sections of the core wall will be removed to maintain a minimum of 6 inches below final grades. Final grading of the Dam crest will include a 5-foot bench out from the abutment walls at an approximate elevation of 998.6 ft. and transition to a 6H:1V slope up to an approximate existing grade elevation of 1,002.0 ft., on both sides.

3.3 Overtopping Protection

Overtopping protection is required to prevent erosion of the Dam during storms larger than the 10-year. TRM will be installed at the upstream face of the Dam and extend to the downstream toe. The TRM specified for the project is PYRAMAT® High Performance, or approved equal. This particular TRM resists velocities up to 25 feet per second (fps) and shear stresses up to 16 pounds per square foot (psf).

Several materials are required to construct the anchor trenches for the TRM. **Sheet 06** of the design set illustrates the proposed TRM plan. The anchor trench along the upstream abutments and the upstream horizontal against the core wall will consist of AquaBlok®. AquaBlok is a composite aggregate sealant consisting of a limestone aggregate core wrapped with powdered sodium bentonite clay. The AquaBlok was chosen for these locations to fill in and plug the voids between the abutment walls and adjacent soil materials, and to reduce seepage through existing pathways.

The anchor trenches located along the downstream face of the core wall and along the downstream abutment walls will consist of 3,000 pounds per square inch (psi) nonshrink grout. Forces along the downstream face of the Dam during overtopping will cause uplift and overturning pressures. The grout anchors proposed at these locations will resist the anticipated pressures and prevent the TRM from displacing.

All other anchors for the TRM are made up of compacted soil, except for at the location of the proposed grouted riprap outlet channel discussed in the next section.

3.4 Grouted Riprap Outlet Channel

As flow increases through the spillway and over the dam, a hydraulic jump occurs, at first, downstream of the existing stone pad. The hydraulic jump starts to move backwards as flow increases, ultimately submerging itself at the location of the existing stone pad. Velocities in the center of the channel are expected to reach nearly 24 fps, while velocities at the banks are expected to reach nearly 19.5 fps at the transition from the stone pad to the natural receiving channel. A grouted riprap outlet channel will be constructed downstream of the existing stone pad and extend on each side onto the existing banks.

The grouted riprap outlet channel will be approximately 90 ft. wide, 20 ft. long and 3 ft. thick. Ohio Department of Transportation (ODOT) Type A will be utilized for the riprap. ODOT Type A ranges in stone size between 18 and 30 inches in diameter, and is recommended to be installed with a thickness of 1.5 times the average stone size (24 inches). The riprap placed on the banks will also serve as the anchor material for the TRM installed at this location.

It is anticipated that a hydraulic jump will occur on the grouted riprap outlet channel and be susceptible to non-uniform flow and high velocities in excess of the ODOT Type A recommended design use. For this reason, AECOM has included in the design that 3,000 psi non-shrink grout be used to hold the riprap in place.

4. Geotechnical Engineering

This section documents the subsurface exploration activities and results of our geotechnical exploration near the spillway structure at the Dam.

4.1 Geotechnical Exploration

A total of four exploratory borings were advanced for the subsurface exploration activities to depths of 20.5 to 40.5 feet below the existing ground surface (bgs). The approximate locations of the borings are provided in **Appendix A**. Prior to drilling, an AECOM representative visited the site to perform reconnaissance and finalize the boring locations. All borings were cleared of any known underground and overhead utilities by notifying the Ohio Utilities Protection Service at least 48 hours prior to the commencement of the exploration drilling activities.

4.1.1 Exploratory Soil Borings

The subsurface exploration was performed on August 24 and 25, 2015, by AECOM's Ohio TestBor Inc., of Hinckley, Ohio. The boring locations were identified in the field relative to existing site features and were later surveyed after drilling and backfilling were completed. A summary of subsurface exploration performed and the corresponding boring locations are presented in Table 4-1 below:

Boring No.	Date Drilled	Boring Depth (feet)	Boring Location Northing (NAD83)	Boring Location Easting (NAD83)	Elevation (NAVD88 feet)
B-1	8/24/2015	40.5	415,890.5	2,243,172.4	1006.6
B-2	8/24/2015	20.5	415,862.3	2,243,217.7	998.3
B-3	8/25/2015	40.5	415,967.9	2,243,257.9	1005.5
B-4	8/25/2015	35.5	415,930.1	2,243,286.2	991.9

Table 4-1: Summary of Subsurface Exploration Boring Locations

Sampling generally occurred as follows:

- After each borehole was drilled to the specified depth, the sampler mounted on the drill rods was lowered to the bottom, seated, and then driven into the soil with a hammer to retrieve a standard penetration test (SPT) sample in general accordance with ASTM D1586.
- The SPT samplers were advanced using a 140-pound safety hammer with a freefall of 30 inches for each blow. The number of hammer blows required to advance the sampler through each of four successive 6-inch increments was recorded in the field. The number of blows required to advance the sampler through the middle 12 inches was recorded as the penetration resistance (blows per foot or "N").
- All borings were sampled at 2.5 foot intervals within the upper 10 feet bgs and at 5foot intervals thereafter using nominal 2-inch diameter split-spoon samplers.

The presence of groundwater was noted within some of the soil samples collected from the borings and water levels in the open boreholes were measured prior to backfilling. Borings were backfilled with a cement bentonite grout mixture to seal the boreholes.

An AECOM engineering geologist was present to oversee all drilling and sampling operations and to log soil samples. All soils were visually classified during drilling in accordance with the Unified Soil Classification System (ASTM D2487). The SPT samples were placed in glass jars, sealed with a lid, and then transported directly to AECOM's subcontractor Geotechnics Inc. in East Pittsburgh, Pennsylvania for laboratory testing.

Logs of the borings were prepared based on the soil classification made in the field and modified based on the results of laboratory testing results. Graphical boring logs are presented in Appendix A of this report.

4.1.2 Geologic Setting

Four significant periods of global cooling during the Pleistocene Epoch (approximately 1.6 million to 10,000 years ago) caused the repeated advancements of continental ice sheets from the Hudson Bay and Labrador areas of Canada southward across the Great Lakes, then into Ohio, Indiana, Illinois and Northern Kentucky. The ice sheets scoured the surface, pulverizing bedrock and soil sediments, incorporating them into the glaciers, transporting and then redepositing the sediments by the glacial-ice itself or by glacial meltwater as the ice sheet melted northward. The Wisconsin period (approximately 85,000 to 11,000 years ago) marked the final glacial advance with glaciers reaching northern Ohio approximately 24,000 years ago. Most of the glacial sediments deposited in the region are Wisconsin-age although earlier deposits may be present beneath.

Till deposits consisting of an unsorted mixture of gravel, sand, silt, and clay were glacial sediments deposited by the glacier itself. Large sheets till deposit formed ground moraine which was flat and compact. Along the edges of the glacier, ridges composed of generally compact till were also deposited by the glacier as terminal or end moraines which marked periods of ice stagnation. As the glacier retreated during warmer periods, the glacial ice melted; enormous quantities of glacial meltwater reworked sediments incorporated into the glacial-ice and redeposited them as glacial fluvial deposits (general term). Sorted to unsorted mixtures of gravel, sand and silt which had formed within or along the edges of the glacial- ice and later collapsed through the weakened melting ice, formed mounds termed kames. Sorted gravel and sand deposits placed by fast-moving water ahead of the glacier formed outwash deposits. Sorted deposits of fine sand, silt and clay were deposited by slower moving meltwater and formed lacustrine deposits which sometimes filled depressions. As the depressions were filled, vegetation would grow along the perimeter and sometimes fill the depression; as the water became stagnant and oxygen-depleted, the dead vegetation did not completely decay and accumulated as peat deposits.

The site was located approximately seven (7) miles north of the irregular-shaped glacial boundary which marked the southern limit of glaciers into Ohio. Kame deposits were mapped directly at the site and ground moraine, end moraine, and outwash deposits were mapped within two miles of the site. The site was also located near the center of a

former northeast to southwest trending pre-glacial valley which was subsequently filled by glacial sediment up to approximately 275 feet thick. The depth to bedrock at the site was approximately 275 feet; the elevation of the top of bedrock at the dam location was between 700 and 750 feet. The bedrock beneath the site was identified as the Mississippian-age (359 to 323 million years ago) Cuyahoga Formation.

4.1.3 Site Subsurface Conditions

The subsurface soils at the project site are primarily fill materials overlying Wisconsinan age glacial outwash deposits. The subsurface profile of the site is relatively consistent, and is generally comprised of the following units (from highest to lowest elevation): Topsoil surficial materials; fill material soils; and coarse-grained outwash soils. Bedrock was not encountered in this investigation. Based on the geologic mapping of the local region, bedrock is substantially deep below the outwash deposit.

The following describes the site-specific subsurface conditions in detail and are based on the results of the field exploration performed at the site.

- Surficial Materials: Topsoil was encountered at the ground surface in all borings. The thickness of topsoil ranged from 2 to 3.5 inches thick.
- Fill Materials: Fill soils were encountered below the topsoil in all borings and are assumed to be the result of grade changes made during the original construction of the embankment. These materials were predominately granular in composition and described as brown, moist, silty sand (SM) or clayey sand (SC) with trace amounts of gravel. In boring B-1, a 4.3 foot thick moist, brown, sandy lean clay layer was encountered at 4.5 feet below the ground surface. Pocket penetrometer test results taken from the clay layer varied from 0.5 to 0.75 tons per square foot (tsf), indicating a medium stiff consistency.

The fill materials were first encountered within the upper half foot of the ground surface and extended to a maximum depth of 14 feet bgs. Thickness of fill materials varied from 2.5 feet in B-4 to 13.8 feet thick in boring B-1 with borings B-2 and B-3 fill thickness varied from 8.2 feet to 8 feet thick, respectively. SPT N-values within the fill materials ranged from 3 to 14 blows per foot (bpf), with an average value near 8 bpf indicating a loose consistency, on average.

Native Granular Soils: A native granular deposit generally described as brown or brown and gray clayey sand (SC) or silty sand (SM) was encountered beneath the fill materials in all of the borings. The nature of the material indicates these are glacial fluvial and outwash deposits. These soils were first encountered at depths varying from 3 feet to 14 feet bgs. Since all borings were terminated within the native granular soils, thickness of this layer was not determined. SPT N-values within native granular soils ranged from 2 to 47 bpf. The average SPT N-value was about 12 bpf, indicating a medium dense relative density on average.

4.1.4 Results of Laboratory Testing

A number of representative samples collected during the exploration activities were subject to index and characterization testing. These tests were utilized to better

evaluate the subsurface conditions and to verify visual classifications of the soils. A summary of the laboratory program is provided in Table 4-2. The table is organized by testing method and soil strata encountered during the exploration activities.

Table 4-2: Summary of Laboratory Testing Program

	ACTM		Fill Materials			Native Granular Soils		
Test Type	Standard	No. of Tests	Result Range	Average	No. of Tests	Result Range	Average	
Moisture Content	D2216	6	7.2 – 20.7	12.3	5	7.8 – 17.4	13.5	
Atterberg Limits*	D4318	4	LL: 23 – 30 PL: 14 – 20 PI: 6 – 11	26 17 9	2	LL: NP & 36 PL: NP & 19 PI: NP & 17	-	
Particle Size Analysis	D422	5	% Gravel: 0.1 – 67 % Sand: 26 – 71 % Silt: 21 – 41 % Clay: 8 – 22 % Fines: 7 – 63	19 44 29 17 38	6	% Gravel: 0.2 – 50 % Sand: 31 – 84 % Silt: 10 – 36 % Clay: 5 – 11 % Fines: 9 – 47	29 49 23 8 22	

(*) - LL denotes liquid limit, PL denotes plasticity limit, and PI denotes Plasticity Index.

The results of the laboratory testing are summarized on the boring logs at the corresponding sample depths. Boring logs and complete results of the laboratory tests are provided in **Appendix A**.

4.1.5 Groundwater Conditions

Groundwater was monitored during and after the completion of drilling operations. During the subsurface exploration drilling operations, groundwater was encountered in all of the borings. Information regarding groundwater depths and duration the boreholes were left open is summarized in Table 4-3: below:

Boring No.	Groundwater Time of	[·] Depth at the Drilling	Groundwater Depth After Auger Removal		
	Feet bgs	Elevation (feet)	Feet bgs	Elevation (feet)	
B-1	10.3	996.3	15	991.6	
B-2	13.5	984.8	Dry	NA	
B-3	14	991.5	-	-	
B-4	23.5	968.4	28.5	963.4	

Table 4-3: Summary of Exploration Groundwater Measurements

Based on the observations during the exploration activities, the natural static groundwater table is located within the native granular deposits. In boring B-1, a wet layer within a sand layer above a clayey sand layer of the fill materials was encountered.

Due to the short duration of groundwater observations, a complete description of the subsurface groundwater characteristics is beyond the scope of this subsurface exploration. However, the static groundwater table will most likely follow the natural topography and will fluctuate with seasonal variations in climate and water levels within the Reservoir.

4.2 Slope Stability Analysis

A slope stability analysis was performed on the dike embankment by utilizing the computer program Slope/W (GeoStudio 2016, <u>http://www.geo-slope.com/</u>). This software is capable of utilizing a wide variety of methods to evaluate stability based on 2-dimensional limit equilibrium theory. For this evaluation, Slope/W was programmed to utilize Spencer's Method to evaluate slope stability to determine factors of safety for circular failure surface geometries for deep-seated global slip surfaces. A solution by Spencer's Method involves an iterative, trial and error procedure in which values for the factor of safety and side force inclination are assumed repeatedly until all conditions of force and moment equilibrium are satisfied for each slice. Then, the forces for each slice are calculated. This method provides an accurate procedure that is applicable to virtually all slope geometries and soil profiles, and it represents the simplest complete equilibrium procedure for computing factors of safety.

As part of this analysis, two sections, Section A-A' and Section B-B' were selected to evaluate embankment stability. The location of the sections was selected based on the embankment critical slope height, orientation, and/or subsurface conditions encountered. Both sections are shown in **Appendix A**. For evaluation purposes, the analysis was performed in general accordance with the U.S. Corps of Engineers Manual EM-1110-2-1902, "Slope Stability" for the following conditions:

- Static, Steady-State, Normal Pool Condition: This case models the conditions under static, long-term conditions, under the normal storage water level within the reservoir. Drained (effective stress) shear strength parameters were used for all materials, and phreatic conditions were estimated based on groundwater observations made during the exploration activities and a preliminary seepage analysis further described in the sections below. A target minimum factor of safety of 1.50 is needed for this loading condition. The operating water level of Sippo Creek reservoir prior to modifications is El. 1001.6 feet.
- Seismic Stability Condition: This case incorporates a horizontal seismic coefficient k_h selected to be representative of expected loading during the design earthquake event (i.e., a "pseudostatic" analysis). The process of determining the seismic coefficient is explained in the next section. The analysis utilizes peak undrained strength parameters in soils that are not considered to be rapidly draining, and peak drained strengths in soils considered to drain freely. The phreatic surface and pore water pressures corresponding to the Steady State Normal Storage Pool case from the static analyses were utilized. Seismic loading was included in this analysis using a pseudostatic coefficient (k_h), which is further described below. A target minimum Factor of Safety of 1.00 is required for this loading condition.

The analysis conditions were evaluated based on the input parameters of the subsurface material parameters, horizontal seismic coefficient, and pre-modification conditions. These evaluations are further summarized in the subsequent sections below. The results of the slope stability analysis are presented in **Appendix A**.

4.2.1 Seismic Load

Based on the results of the exploration activities, the presence of loose fill materials and medium dense granular native soils indicate the most appropriate classification of the site seismic is Class D.

The seismic coefficient (k_h) is calculated based on the seismic hazard identified at the site. It is a variable in which the inertia forces due to earthquake shaking are represented by a constant horizontal force equal to the weight of the potential sliding mass multiplied by the peak average acceleration of the failure mass. This additional force is used in the limit equilibrium stability analyses to account for seismic impacts in the design for the facility and to minimize impacts to the engineered components. This approach is commonly called a pseudostatic analysis and is one of the simplest means used in earthquake engineering to analyze the seismic response of soil embankments and slopes.

The seismic coefficient is typically the only variable necessary to perform the pseudostatic analysis and is used directly in the limit equilibrium analyses as an additional load applied to the embankment. Determination of the peak ground acceleration (PGA) for high hazard dams is usually associated with a design earthquake with a 2% probability exceedance in 50 years (2,475-year return period). Based on the 2008 USGS seismic hazard map, the design quake around the Reservoir is a Magnitude 6.07 and has a peak ground acceleration of 0.063g at the top of competent deep rock. By using a 1.6 amplification multiplier associated with Site Class D materials (per ASCE/SEI Standard 7-10); the PGA at the ground surface (or base of the embankment) would be near 0.101g. Peak acceleration of the embankment was estimated by using the correlations developed by Harder (1991), which compares the base to crest accelerations (U_{max}) at earthen dams from recorded earthquakes.

Figure 4-1: Base Crest Acceleration of Earthen Dams (Harder, 1991)

Figure 4-2: Variation of Maximum Acceleration Ratio (Makdisi and Seed, 1978)

Figure 4-1 above includes the Harder curve and the corresponding site crest correlation shown in red. This indicates acceleration at the embankment crest is near 0.34g. In order to determine the coefficient of acceleration at the center of the stability slice (k_{max}), the chart by Makdisi and Seed (1978) was utilized. A value of 1.0 was utilized for the ratio of the height of failure slice to dam height. Based on the correlation shown in Figure 4-2, a k_{max} / U_{max} ratio is equal to 0.34. Therefore, the seismic coefficient of 0.116g (0.34 x 0.34 = 0.1156) was utilized in the stability analysis.

4.2.2 Material Parameters

Material properties for the slope stability analyses were developed by correlating the insitu testing collected from the exploration activities and the results of the laboratory testing. For material parameters not critical to the analysis, conservative values for the materials were assumed based on engineering judgement. The properties used in the stability analysis are summarized in Table 4-4: below:

Table 4-4: Summary of Material Parameters used in Stability Analysis

Material	Unit Weight	Effective (drained) Shear Strength Parameters		Total (undrained) Shear Strength Parameters	
	pcf	c' (psf)	Φ' (°)	c' (psf)	Ф' (°)
Granular Fill Materials	115	0	29	-	-
Clay Fill Materials	125	100	29	300	15
Native Granular Soils	117	0	30	-	-

4.2.3 Results

Table 4-5 summarizes the results of the stability analysis for both sections analyzed, and output figures from the SLOPE/W models are provided in **Appendix A**.

Table 4-5. Results of Stability Analysis

Oraco Doction	Required Factor	Section	n A-A '	Section B-B'	
Cross Section	of Safety	Downstream	Upstream	Downstream	Upstream
Static, Steady State, Normal Pool	FS ≥ 1.5	1.62	1.61	3.76	1.65
Seismic, Pseudostatic Condition	FS ≥ 1.0	1.22	1.09	2.11	1.06

Both sections pass the static loading condition for steady-state under normal pool conditions and the seismic (earthquake) condition. Based on the analysis performed, the pre-modification conditions of the embankment are stable and do not need additional measures or improvements to the embankment to satisfy global stability requirements.

4.3 Geotechnical Conclusions

Based on the results of the subsurface exploration activities and the subsequent stability analysis, the following geotechnical conclusions as it relates to the proposed improvements are provided:

- Proposed improvements to the spillway structure include removing a two to four layers of the existing stone and lowering the normal pool level within the reservoir to El. 998.6 feet. Lowering the pool level in a controlled manor will result in a lower phreatic surface through the dike embankment and thus a higher factor of safety for global stability.
- The removal of the stone layers on the spillway structure will reduce the bearing pressure applied at the base of the structure. Since the existing structure has remained in place for a long time (over 100 years), the initial bearing stress from the structure has equilibrated within foundation soils. Therefore, bearing calculations were not performed since no new loading will be applied to the foundation soils.

5. Hydrologic and Hydraulic (H&H) Engineering

The basis of this design relied heavily on hydraulic and hydrologic analysis of the entire contributing watershed, the Reservoir, the Dam, and Sippo Creek. Hydraulic and Hydrologic evaluations and computations assisted AECOM in preparing the recommended design solution to successfully accomplish project goals. The following sections represent the multiple components that make up the H&H design.

5.1 Hydrologic Evaluation

In July 2013, URS Corporation (now AECOM) completed an H&H analysis that concentrated on determining the design flood discharge for the Dam and satisfy ODNR regulations for Class I permitting. The intent of the analysis was to determine the design flood to facilitate the design of an economically feasible dam improvement plan that satisfies ODNR, City of Massillon, and the SWCD.

The City of Massillon has elected to remove the Dam from ODNR regulations and future permitting requirements lowering the category of the Dam from Class I to Class IV. The resultant IDF for the Dam is the 100-year storm, down from 100% of the PMF.

5.1.1 HydroCAD Modeling

AECOM utilized the HydroCAD model, updated for the current version of the software (version 10.00-19), developed for the H&H analysis prepared in July 2013 for the City of Massillon to calculate the peak inflow generated from the 10 and 100-year storms. The model was developed by replicating previously constructed hydrologic models updated with topography information gathered from survey data. The drainage area for Sippo Creek includes 9,459 acres, and consists of rural and subdivided areas, residential lots, wooded grassland, and wooded areas. The total drainage area was modeled with several subcatchments, reaches, and ponds representing the complex watershed for the Reservoir. A schematic of the HydroCAD model is illustrated below.

Figure 5-1: HydroCAD Model Routing Diagram

The precipitation frequency amounts for the 10 and 100-year storms were obtained from the National Oceanic and Atmospheric Administration, Massillon Ohio location, for the 24-hour duration, and are tabulated below.

Table 5-1: NOAA Precipitation Frequency for Massillon Ohio (24-hr Duration)

Description	Precipitation (in)
10-year	3.56
100-year	5.74

AECOM selected the Soil Conservation Service (SCS) Type II 24-hour storm type for the distribution, presented below in Figure 5-2.

Using HydroCAD, AECOM routed the storm and precipitation frequency depths through the model to obtain Reservoir inflow and outflow hydrographs, peak WSE's, and design storage. The results of the proposed design while routing the 10-year storm into the Reservoir is illustrated in Figure 5-3.

Figure 5-3: HydroCAD 10-yr Storm Design Results

Results of the HydroCAD model indicate a peak inflow of approximately 818 cubic feet per second (cfs) and an outflow of approximately 800 cfs. Note that all the flow is passed through the primary spillway without overtopping the Dam (secondary).

The results of the proposed design while routing the 100-year storm into the Reservoir is illustrated in Figure 5-4.

Figure 5-4: HydroCAD 100-yr Storm Design Results

Results of the HydroCAD model indicate a peak inflow of approximately 1,973.5 cfs and an outflow of approximately 1,971.7 cfs. During the 100-year storm, the WSE in the Reservoir is estimated to rise to approximately 1,000.5 ft., approximately 2 ft. above the crest of the Dam. The right and left abutments are anticipated to pass approximately 300 cfs each.

Detailed HydroCAD modeling output and calculations are provided in **Appendix B**.

5.2 Hydraulic Design

AECOM modeled the hydraulic design using the Hydraulic Engineering Center River Analysis System 5.0.3 (HEC-RAS). The model was assembled using Geographic Information System (GIS) software (ArcMap) and Geo-RAS. Geo-RAS is a GIS add-on program that allows the user to create RAS layers such as a reaches, cross sections, bank station and flow paths within GIS to create a geo-referenced model of the existing conditions.

5.2.1 HEC-RAS Modeling

AECOM assembled the HEC-RAS model and inserted the proposed improvements to calculate velocities and shear stresses to assist with the design of the overtopping

protection and erosion control measures. A schematic of a portion of the HEC-RAS model at the location of the Dam is illustrated in Figure 5-5.

Figure 5-5: HEC-RAS Model Schematic

Cross section geometry and roughness coefficients (Manning's n values) were adjusted in the model to account for lowering of the Dam and primary spillway (final grading) as well as the overtopping protection and erosion control measures for the design. The following table illustrates the range of values used for the Manning's roughness coefficients in the model.

Table 5-2: Modeled Manning's Values

Land Use Description	Manning's Value	
Buildings	0.1	
Trees/Wooded Areas	0.8	
Light Brush/Grassy Areas	0.06-0.045	
Channel/Lake	0.03	
Riprap	0.036	

TRM	0.025 (unvegetated)
Stone Pad	0.02
Concrete	0.015

AECOM performed a steady state flow analysis with multiple flow rates (profiles) to determine maximum velocities at critical locations. Figure 5-6 represents a range of profiles from the 10 to the 100-year storm. A hydraulic jump forms downstream of the existing stone pad and as flow increases works its way backwards towards the primary spillway before submerging itself. Maximum velocities occur before the hydraulic jump submerges itself downstream of the existing stone pad and on the stone pad itself.

Figure 5-6: HEC-RAS Steady State Flow Analysis Profile Plot

Critical locations for the design of erosion protection of the receiving channel occur at the transition between the existing abutment walls and the banks of the receiving channel (Banks) as well as the receiving channel bed just downstream of the stone pad (Channel). HEC-RAS estimates that a flow rate equal to 1,500 cfs will result in the maximum velocity that occurs at the transition from the stone pad to the riprap outlet channel before the hydraulic jump submerges itself. A table of the estimated maximum velocities at this location is illustrated in Table 5-3.

Table 5-3: HEC-RAS Maximum Velocity Results

Description	Maximum Velocity (fps)				
Banks	19.5				
Channel	23.8				

Design of the erosion protection at the confluence between the existing abutments walls and stone pad with the receiving channel should consider a maximum velocity of 19.5 fps along the channel banks, 23.8 fps at the center of the channel, and should extend up the banks to an elevation of approximately 993.0 ft.

HEC-RAS modeling output for the 10-yr through 100-yr profiles is provided in **Appendix B**.

5.2.2 Grouted Riprap Outlet Channel

AECOM evaluated the maximum velocities that are estimated to occur in the receiving channel. AECOM designed a grouted riprap outlet channel to aid with energy dissipation at the outlet of the existing stone pad. Outlet depths and velocities were evaluated to size the riprap protection and help minimize erosion of underlying material.

The grouted riprap channel is approximately 90-feet wide, extends 20-feet past the stone pad and will be a minimum of 3-feet thick. The grouted riprap placed along the edges of the embankments will also act as the material for the TRM anchor trenches at these locations.

The maximum velocity at the transition from the stone pad to the receiving channel were used to determine an average rock diameter (known as the D_{50} diameter) to be used to specify the size of riprap. This value was calculated using several references, and then an average taken across the analysis. Results of the calculation are tabulated below.

Table 5-4: Riprap Outlet Channel Calculation Results

Description	Max. Velocity (fps)	Average D ₅₀ (in)	Max. Diameter
Outlet Channel	23.8	44	86 (in)

Results of the calculation indicate that grout will be necessary to reduce the average stone size for the riprap outlet channel. AECOM referenced the following source to assist with the design of the grouted riprap outlet channel:

Urban Drainage and Flood Control District Criteria Manual, 2008. Volume 2, Structures, Storage and Recreation, Chapter 9: Hydraulic Structures.

AECOM calculated a minimum grouted rock size and length of the outlet channel using the reference specified above. A rock sizing parameter was determined to select a minimum grouted rock size. The unit discharge was determined to design the length of the outlet channel. Results of the design are tabulated below.

City of Massillon

DRAFT

Table 5-5: Grouted Riprap Outlet Channel Calculation Results

Description	Calculated Value
Rock Sizing Parameter R _p	5.3
Min. Dimensions of Grouted Boulder	24 in
Unit Discharge (q)	25 cfs/ft
Length of Outlet Channel	20 ft.
Grout Height	18 in

Results of the grouted riprap outlet channel design suggest a minimum grouted boulder size of 24 inches, an outlet channel length of 20 feet, and a grout height of 18 inches. AECOM has specified ODOT Type A Riprap (18-30 inches) be used for the rock, placed with a minimum thickness of 3 feet, and grouted in place using a minimum of 3,000 psi non-shrink grout.

5.2.3 TRM

TRMs are permanent solutions that provide erosion control, allow for vegetation establishment, and also provide permanent reinforcement to the vegetation. TRMs are typically used in applications where vegetation alone will not be able to withstand design hydraulic forces. TRM will be used on the upstream and downstream faces of the left and right embankments. The upstream and downstream TRM is designed to provide erosion protection up to and during the design storm.

To construct the embankment overtopping protection, a 3-inch layer of the embankment will be stripped and topsoil will be added to the embankments, and then a seed mixture will be applied to the topsoil. After topsoil and seed has been placed, TRM will be rolled over the seed and anchored with 18-inch pins, at approximately 2.5 per square yard of material, to keep the mat in place. Additionally, 5-foot deep duck bill anchors will be added to the mat in critical locations to ensure that the mat will not be displaced. Vegetation can grow through the TRM and provide a root system into the soil below, reinforcing the matrix. In this manner, the TRM becomes a living blanket over the embankments that requires little maintenance and provides long lasting erosion protection.

The TRM is to be anchored on the upstream side of both embankments in a soil backfilled trench centered at an elevation of approximately 995.0 ft. The upstream embankment along the cutoff wall and the abutment stones will be backfilled with Aquablock[™] to help prevent seepage as the WSE in the Reservoir increases. The toe of the mat and the mat adjoining the downstream abutments will be anchored in a grout trench to ensure the mat is not able to be dislodged during anticipated uplift and overturning pressures. Trenches for the TRM are to be on all sides of the overtopping protection and extend roughly 2 feet onto the crest. Sheets 06, 08, and 09 of the draft design set illustrate the details of the anchor trench and anchor pin configurations.

The selected mat must be able to perform under severe hydraulic conditions. The mat must be able to withstand a shear stress of at least 16 psf and velocities of approximately 24 fps. The selected mat is High Performance PYRAMAT, or approved equal, and rated for velocities up to 25 fps and shear stresses up to 16 psf.

Velocities and shear stresses were determined using HEC-RAS, Bentley FlowMaster V8i, and supporting hand calculations. Results indicate that the velocities and shear stress are less than the allowable at all locations where TRM is to be placed.

A detailed calculation for the design of the TRM is provided in Appendix B.

6. Structural Engineering

AECOM conducted a site visit at the Dam on May 3, 2017 to assess the current condition of the Dam and to take field measurements. Per emergency order of ODNR, 3 courses of the Dam were partially removed. It was proposed to lower the Dam by 4 complete courses (one additional course and the remaining partial courses), reducing the height of the Dam by approximately 8 feet. Structural analysis of the proposed lowering was conducted according to the Army Corps of Engineers Manuals and Regulations, particularly EM 1110-2-2200 "Gravity Dam Design" and ER 1110-2-1806 "Earthquake Design and Evaluation for Civil Works Projects." Numerous conservative assumptions were made due to the lack of existing plans and visual constraints.

Per EM 1110-2-2200, three load conditions were investigated: Condition No. 2, Condition No. 3, and Condition No. 6. Note that Condition No. 5 (Unusual – Operating Basis Earthquake) was not considered because Condition No. 3 (Unusual Flood) controlled the unusual load condition. Each load condition was checked for overturning, sliding, and bearing at each course. Additionally, each case was checked with uplift (A) and without uplift (B). For specific load case assumptions, please refer to the structural calculations provided as **Appendix C**. The results for each condition are listed below.

- > Load Condition No. 2: Usual Normal Operating Construction
 - \checkmark Overturning All resultants were located within the middle 1/3 of the base
 - ✓ Sliding Course 5A (bottom course) controlled with FS = 1.87 < 2.0 Per engineering judgment, the use of numerous conservative assumptions and the existing condition of the Dam, a factor of safety of 1.87 for this load condition is sufficient. All other factors of safety are greater than 2.
 - ✓ Bearing Course 5B controlled with σ_{max} = 1.25 ksf. < 2.0 ksf.
- Load Condition No. 3: Unusual Flood Discharge (100-yr)
 - \checkmark Overturning All resultants were located within the middle 1/2 of the base
 - ✓ Sliding Course 5A controlled with FS = 1.87 > 1.7
 - ✓ Bearing Course 5B controlled with σ_{max} = 1.39 ksf. < 2.0 ksf.
- Load Condition No. 6: Extreme Normal Operating with Earthquake (MCE)
 - ✓ Overturning All resultants were located within the base
 - ✓ Sliding Course 5A controlled with FS = 1.23 < 1.3 Per engineering judgment, the use of numerous conservative assumptions and the existing condition of the Dam, a factor of safety of 1.23 for this load condition is sufficient. All other factors of safety are greater than 1.3.
 - ✓ Bearing Course 5B controlled with σ_{max} = 1.32 ksf. < 2.0 ksf.

7. Bibliography

To Be Provided In Final Submittal

Appendix A Geotechnical Engineering

- A.1 Geotechnical Figures
- A.2 Geotechnical Boring Logs
- A.3 Laboratory Testing Results
- A.4 Slope Stability Analysis

	_						
	GENERAL NOTES:	-		1330ED FOR L		DATE	BY
	1. BORING SAMPLES WER 2015.	E TAKEN BY AECOM ON AUGU	JST 13,	ADE	DENDUM REVISION	NS	
	2 SEE SHEET C-102 FOR C	GEOLOGIC CROSS SECTIONS	BASED ON	ADDENDUM NO	ADDENDUM DATE	BY	
· · · · · · · · · · · · · · · · · · ·	THESE BORINGS.						
		EXISTING 5-FOOT CONTOU	IR	ISSUED FOR (
		EXISTING 1-FOOT CONTOU	IR	ISSUED FUR	JUNSTRUCTION .	DATE	BY
	SAN	SITE ACCESS ROUTE			REVISIONS		
	SHN STM	STORM SEWER		NO. DE	SCRIPTION	DATE	BY
		EDGE OF PAVEMENT					
		AECOM BORING LOCATION	N (2015)				
	B-3						
	A, ,A'						
		GEOLOGIC CROSS SECTIO	N LOCATION				
Q							
<u>L</u>	-						
ſ							
->	<						
				RECORD DRAWI	NGS		
						DATE	БТ
/							
~							
				60 PE		SIGN	
					R CONSTRI		N
<u> </u>							-
				COPYRIGHT: A	LL RIGHTS RESE	RVED.	
		\bigcirc		DRAWN NSF	DATE	1/22/	16
				CHECKED JLV	JOB NO	6043914	15
		V V		CIDDO OD			
		~		REHAB	LITATION DE	UIR DA	-\IVI
$\left\{ \right\}$					DRAWINGS		
	n	20	40		N, STARK CO	UNTY, 2	OH
						<u> </u>	
		SCALE IN FEET		BORI		ΓΙΟΝ	
)					PLAN		
/		BAR IS	ONE-INCH ON				
			AL DRAWING		ECOM		
				-			
		IF NO THEN AL	UNE-INCH, DJUST SCALES		C-101		

SECTION B-B'

C: \Users\Chet_Dicke\Desktop\Projects\Sippo Creek Reservoir Dam Improvements\dwg\05_C-102-Geologic cross sections.dwg User: Chet_Dicke May 24, 2016 - 7:45pm

SECTION A-A'

GENERAL NOTES:

1. SEE SHEET C-101 FOR PLAN LOCATION OF THESE CROSS SECTIONS.

ISSUED FOR BIDDING

ADDENDUM NO

ADDENDUM REVISIONS

ADDENDUM DATE

ΒY

- 2. BORING SAMPLES WERE COLLECTED BY AECOM FROM AUGUST 24 TO 25, 2015.
- 3. NATIVE SAND AND NATIVE GRAVEL ARE SHOWN HEREIN AS SEPARATE MATERIALS BASED ON LABORATORY MATERIAL CLASSIFICATIONS. THE

NATIVE SAND	AND GRAVEL MATERIALS			Į
AS GLACIAL FL	UVIAL OUTWASH MATERIALS.	ISSUED	FOR CONSTRUCTION	
				DAIE BY
			REVISIONS	
LEG	END	NO.	DESCRIPTION	DATE BY
	EXISTING GROUND			
·	WATER LEVEL AT THE TIME OF EXPLORATION ACTIVITIES			
	OBSERVED MATERIAL CHANGE L	INE		
	UNKNOWN / POSSIBLE MATERIAL CHANGE LINE			
	SURFACE MATERIALS (TOPSOIL)			
	FILL MATERIALS			
	NATIVE SAND DEPOSIT			
	NATIVE GRAVEL DEPOSIT			
	ORGANIC SOILS			
		RECORD		
		RECORD	DRAWINGS	DATE BY
		NOT	FOR CONSTR	RUCTION
		COPYRIC	GHT: ALL RIGHTS RES	SERVED.
		DRAWN	CAD DATE	1/22/16
		SCALE:	AS SHOWN	0 00100110
		SIPPO	O CREEK RESER	VOIR DAM
		RE		DESIGN
		MASS	ILLON, STARK C	, OUNTY, OH
0	10 20		ODNR# 0614-0)12
			GEOLOGI	С
	SCALE IN FEET	C	ROSS SECT	IONS
	BAR IS ONE-II			
			AECON	1
	IF NOT ONE- Then Adjust	-INCH, SCALES	C-102	
	ACCORDIN	GLY		

Project: Sippo Creek Dam Improvements Project Location: Massillon, Ohio Project Number: 60439145	Key to Log of Sheet 1 of 1			
Elevation, feet Type Sampling Resistance Blows/6" Recovery, Fecovery, Inches Graphic Log Graphic Log	RIAL DES	SCRIPTION	Water Content, %	REMARKS AND OTHER DETAILS
1 2 3 4 5 6 7 8 COLUMN DESCRIPTIONS	9		10	<u>11</u>
 <u>Elevation</u>: Elevation in feet referenced to mean sea level (MSL) or site datum. <u>Depth</u>: Depth in feet below the ground surface. <u>Sample Type</u>: Type of soil sample collected at depth interval shown; sampler symbols are explained below. <u>Sample Number</u>: Sample identification number. <u>Sampling Resistance</u>: Number of blows required to advance driven sampler each 6-inch interval, or distance noted, using a 140-lb hammer with a 30-inch drop. <u>Recovery</u>: Percentage of driven sample length actually recovered. <u>Pocket Penetrometer</u>: Pocket penetrometer field consistency measurement in tons per square foot (tsf). 	8 Gran encode	bhic Log: Graphic depiction of puntered; typical symbols are end of the series of	f subsu xplaine o of ma size, an soil sa dry we nments by drill	urface material d below. terial encountered; d density/consistency. mple measured in ight of sample. and observations ler or field personnel.
Topsoil Clayey Sand		ean Clay Clayey Gravel		
Silty Sand Silty to Poorly-Graded Poorly-Graded Sand Organic Silt		Silty to Poorly-Grade Gravel Silty Gravel		
OTHER GRAPHIC SYMBOLS ✓ Water level in boring ATD ✓ Water level in boring at time indicated after drilling ✓ Minor change in material properties within a lithologic stratum	TYPICAL Split	<u>- SAMPLER GRAPHIC SYM</u> spoon by Tube	BOLS	
 Inferred or gradational lithologic contact ATD At Time of Drilling NR Not Recorded NA Not Applicable bgs Below Ground Surface 	Recover Sample Length	ed Driver Samp Lengt	n ile h	
Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; field descriptions may have been modified to reflect lab test results. Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced; they are not warranted to be representative of subsurface conditions at other locations or times.	"trace" "with" "y"	When the soil type's percentage procedures, to be between 1 and When the soil type's percentage procedures, to be greater than 1 30 percent of the total sample. When the soil type's percentage procedures, to be greater than 3	is estima 15 percen 5 percen is estima 0 percen	ared, using visual/manual sent of the total sample. ated, using visual/manual it and less than ated, using visual/manual t of the total sample.

Report: GEO_CR_KEY; File C:/USERS/CHET_DICKEIDESKTOPIPROJECTS/SIPPO CREEK RESERVOIR DAM IMPROVEMENTS/LOGS/SIPPO DAM BORING LOGS .GPJ; 5/24/2016 4:47:26 PM

Project: Sippo Creek Dam Improvements

Project Location: Massillon, Ohio

Project Number: 60439145

Log of Boring B-1

Sheet 1 of 2

Date(s) Drilled	8/24/15	Logged By	T. George	Checked By	C. Dicke
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	3-1/4" ID, 7" OD	Total Depth of Borehole	40.5´ bgs
Drill Rig Type	Mobile B-57 Rubber Track ATV	Drilling Contractor	Ohio Testbor	Surface Elevation	1006.6 ft above msl
Borehole Backfill	Cement Bentonite grout to 1 ft bgs, auger cuttings to ground surface	Sampling Method(s)	Split Spoon	Hammer Data	140#/30" Auto
Boring Location	N 415,890.5 E 2,243,172.4	Groundwater Level(s)	Encountered @ 10.3' bgs ATD; WL 15' bgs	; 45 minutes a	fter drilling

		SAMPLES							
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer, tsf	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER DETAILS
 1005 	-	SS-1	7 7 4	17			Medium dense, moist, brown, coarse to fine silty SAND (SM), trace - gravel [FILL]	7.2	Gravel blocking shoe recovery
-	- 5	SS-2	2 3 6 1	58	0.5 0.75		Loose, moist, brown, silty GRAVEL (GM) with clay and sand [FILL]		
-1000 -	-	SS-3	2 2 3	61	0.75 0.75 0.75		✓ becomes with to trace gravel	20.7	LL=26 PL=16 PI=10 %G=0.30 %S=36.73 %M=40.55 %C=22.42
_	- 10-	SS-4	2 2 3 2	25			^{997.9} Loose, moist, brown, coarse to fine SAND (SP-SM), trace gravel [POSSIBLE FILL] ♀		
—995 —	-						29944		
_	- 15–	SS-5	2 5 1 1	50			Very loose, wet, brown, clayey GRAVEL (GC) with sand, trace	13.9	%G=45.61 %S=30.51 %F=23.88 Begin to add water inside
—990 —	-								of augers to prevent heave
_	- 20-	SS-6	4 5 5 3	42			v w becomes loose, brown and gray		
—985 —	-								
_	25-	SS-7	10 9 10 8	46					
-980 	-								
-	- 30-	SS-8	4	50			- y ─ becomes loose to medium dense -	16.2	%G=39.46 %S=46.62 %F=13.92
							A <u>e</u> com		
Project Location: Massillon, Ohio

Project Number:

er: 60439145

Log of Boring B-1

Sheet 2 of 2

Ĺ	SAMPLES				ES						
	Elevation, feet	− 05 Feet	Type	Number	Sampling Resist. h Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer, tsf	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER DETAILS
-	- -975 -	-		<u>SS-8</u>	4	50				-	
:14:23 PM	_	35		SS-9	12 16 21 10	46			w → becomes dense, moist to wet, sandy silty GRAVEL (GM)	-	
.GPJ; 5/24/2016 5	-970 - -	-		SS-10	777	50			Medium dense, wet, brown, poorly-graded SAND (SP-SM), trace	-	
0GS	_	40-		33-10	8	50				ł	
UC L	_				-			participité 	L End of Boring at 40.5´ bgs	<u> </u>	
LOGS/SIPPO DAM BORIN	-965 - - -	-	-							-	
DIR DAM IMPROVEMENTS	-960 	-							- · · · · · · · · · · · · · · · · · · ·	-	
CTS/SIPPO CREEK RESERV	955 	-							- · · · · · · · · · · · · · · · · · · ·	-	
DICKE\DESKTOP\PROJEC	- -950 - -	-							- · · · · · · · · · · · · · · · · · · ·	-	
CR; File C:\USERS\CHET	 945 	-	-						- · · · · · · · · · · · · · · · · · · ·	-	
Report: GEO					. 1				AECOM	<u>.</u>	

Project Location: Massillon, Ohio

Project Number: 60439145

Log of Boring B-2

Sheet 1 of 1

Date(s) Drilled	8/24/15	Logged By	T. George	Checked By	C. Dicke
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	3-1/4" ID, 7" OD	Total Depth of Borehole	20.5´ bgs
Drill Rig Type	Mobile B-57 Rubber Track ATV	Drilling Contractor	Ohio Testbor	Surface Elevation	998.3 ft above msl
Borehole Backfill	Cement Bentonite grout to 3 ft bgs, bentonite chips from 1 to 3 ft bgs, auger cuttings to ground surface	Sampling Method(s)	Split Spoon	Hammer Data	140#/30" Auto
Boring Location	N 415,862.3 E 2,243,217.7	Groundwater Level(s)	Encountered @ 13.5' bgs ATD	•	

				SAWPL	<u>E9</u>						
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer, tsf	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER DETAILS	
F	Ŭ						đ	^{998.0} 3.5" Topsoil	1		
-	-		SS-1	5 6 4	56			SAND (SM) with gravel, trace brick			
-995	-	L					CH.	Very loose, moist, brown, poorly-graded GRAVEL (GP-GM) with	1		
	5-		SS-2	3 2 2 3	25			_ silt [FILL] 	-		
\vdash	-	Π		8			SI.	 becomes medium dense, dark brown, trace gray, well- graded GRAVEL with silt and sand 	-	%G=67.32 %S=25.55	
_				SS-3	6 5	44		1	-	9.2	%F=7.13
_990	- 10-		SS-4	3 3 4	79	0.75		Medium stiff, moist, brown, ORGANIC SILT (OL) as topsoil with gravel, trace roots	-	Appears similar to topsoil	
-				3				Loose, moist, brown, trace black, clayey SAND (SC) with gravel, trace coal, trace black organics	-		
— —985	-							Be6.1			
	15-		SS-5	3 3 6 7	38						
 980		-						-	-		
_	20 –		SS-6	2 2 2 2	29			- F becomes very loose	_	%G=49.98 %S=40.96 %F=9.06	
	-							End of Boring at 20.5' bgs	-	No water in auger after	
_ _ _975 _		-						-	-	anning	
_	-							-	-		
-970 -	-							-	-		
								A=0044		1	
·								Aevvn			

Project Location: Massillon, Ohio

Project Number: 60439145

Log of Boring B-3

Sheet 1 of 2

Date(s) Drilled	8/25/15	Logged By	T. George	Checked By	C. Dicke
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	3-1/4" ID, 7" OD	Total Depth of Borehole	40.5´ bgs
Drill Rig Type	Mobile B-57 Rubber Track ATV	Drilling Contractor	Ohio Testbor	Surface Elevation	1005.5 ft above msl
Borehole Backfill	Cement Bentonite grout to 1 ft bgs, auger cuttings to ground surface	Sampling Method(s)	Split Spoon	Hammer Data	140#/30" Auto
Boring Location	N 415,967.9 E 2,243,257.9	Groundwater Level(s)	Encountered @ 14' bgs ATD		

			SAMPL	ES						
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer, tsf	Graphic Log	MATERIAL DESCRIPTION	0.0	Water Content, %	REMARKS AND OTHER DETAILS
-1005	0-						¹ % ^{5.3} 2" Topsoil	0.2		
	-					PO(L Boulder from 2" to 1.5 ft bgs	15		
F	-	_				XX	Medium dense, moist, brown, silty clayey SAND (SC-SM), trace	1.0		
╞		SS_1	3	61		XX	gravel [FILL]			
L	-	00-1	7	01		XX		-		
	-		3			XX	🚽 🚛 becomes loose	-		LL=23 PL=17 PI=6
\vdash	_	SS-2	4	83		XX			11.6	%G=0.54 %S=70.93
-1000	5-		2			XX				%IVI-20.01 %C-7.93
	-		2			XX	becomes very loose, clayey SAND (SC), trace gravel	+		=25 P =14 P =11
F	_	SS-3	1	56		XX			16.3	%G=2.71 %S=56.55
╞			2			XX				%M=25.52 %C=15.23
	-					XX	hasomaa maiat ta wat	-		
Γ	-		1			XX		_		
⊢		SS-4	2	42		HHH	1996.0	<u>9.</u> 5		
_005	10-		2					-		
335	-							-		
⊢										
F	-						becomes moist to wet, clayey gravel with sand	T		
	-							-		
F	-		1				3 <u>1991.5</u>	14/0		
╞		SS-5	1	67			Very loose, wet, grayish-brown, silty SAND (SM) with gravel			
	15–		4				-	-		
-990	-							4		Added water inside of
F										augers to prevent neave
	-							1		
	-							-		
-	_		3				becomes loose, brown			
L		SS-6	3	50					17.4	%G=38.15 %S=39.62
0.05	20-		2				—	-		/0/-22.23
-985	_							_		
⊢							092 E	22.0		
L	-						Loose, wet, brown, coarse to fine poorly-graded SAND (SP) with	_22.0_		
	-						_ gravel, trace coal staining	+		
F	_		3							
┝	_	SS-7	3	54						
000	25-		3					-		
-980	-							_		
⊢										
L	-							1		
	-							+		
F							becomes medium dense, fine SAND			
╞	-	SS-8	3	50				1		
	30-	V	-		1	<u>providé</u>	J			
							AECOM			

Report: GEO_CR; File C:/USERS/CHET_DICKEDESKTOPPROJECTS/SIPPO CREEK RESERVOIR DAM IMPROVEMENTS/LOGSSIPPO DAM BORING LOGS. (5PJ; 5/24/2016 5:14:38 PM

60439145

Project Location: Massillon, Ohio

Project Number:

Log of Boring B-3

Sheet 2 of 2

	SAMPLES		-									
	Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer, tsf	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	REMARKS AND OTHER DETAILS
	-975	50		SS-8	4	50						
6 5:14:38 PM	 970	- 35-		SS-9	8 7 8 9	46			- ↓ → becomes coarse to fine SAND with gravel			
24/201	_	-							Medium dense, wet, brown, sandy silty GRAVEL (GM), trace clay			
GPJ; 5/	_	-			11				-	-		Drill water @ 2.7 ft has
OGS .	_	40-		SS-10	11 10	46			965.0	40.5		after drilling
INGL	-965	-							End of Boring at 40.5' bgs	-		
A BOR		-							-	-		
0 DAN	_	-							-	-		
S\SIPP	_	-							-	+		
/LOG5	-960	-	1						-	-		
ENTS		-	1						-	-		
OVEM	_	-	1						-	-		
IMPR		-	1						-	-		
K DAM	_	-	1						-	1		
RVOIF	-955											
RESE		-							-			
REF									_			
PO CI	_	-							_			
TS/SIF	_	_							_	_		
OJEC	-950	-							-	-		
JP/PR		-							-	-		
ESKT	_	-							-	-		
CKEND	_	-	-						-	+		
) D	-945	-	-						-	-		
S/CH			1						-	+		
USER	_	-	1						-	+		
File C:	_	-	1						-	+		
CR	_	-	1							+		
eport: GEC		_										
щ									Aecom			

Project Location: Massillon, Ohio

Project Number: 60439145

Log of Boring B-4

Sheet 1 of 2

-					
Date(s) Drilled	8/25/15	Logged By	T. George	Checked By	C. Dicke
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	3-1/4" ID, 7" OD	Total Depth of Borehole	35.5´ bgs
Drill Rig Type	Mobile B-57 Rubber Track ATV	Drilling Contractor	Ohio Testbor	Surface Elevation	991.9 ft above msl
Borehole Backfill	Cement Bentonite grout to 1 ft bgs, auger cuttings to ground surface	Sampling Method(s)	Split Spoon	Hammer Data	140#/30" Auto
Boring Location	N 415,930.1 E 2,243,286.2	Groundwater Level(s)	Encountered @ 23.5' bgs ATD; WL 28.5' bg	gs	

Image: Section of the section of th	
990 SS-1 4 39 39 37 Slag layer 02 990 SS-1 8 39 4 39 4 39 4 39 4 39 4 5 6	ND AILS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
990 SS-1 4 39 Medium dense, damp, brown, clayey SAND (SC), trace gravel 8.6 Image: Classical cl	10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=10 28.53
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.69
Loose, damp, brown, clayey SAND (SC), trace gravel $5 - \frac{5}{5}$ 71 $5 - \frac{5}{5}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.28 hood
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	based
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$10 - \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} +$	
$10 - \frac{1}{3} + \frac{1}{3} +$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.99
-980 -980 -5 -5 3 -7 -7 -7 -7 -7 -7 -7 -7	5.4
-980 -980 -55 -5 3 -5 -3 -46 -6 -7 -7 -7 -7 -7 -7 -7 -7	
-980 -980	
15 = 15	
15 = 15	
15 - 15	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SS.6 3 58	
-970 22.0	
Medium dense, moist to wet, brown, sandy silty GRAVEL (GM),	
-96527.0	
Very loose, wet, brown, coarse to fine poorly-graded SAND (SP)	
H 30 - N ²	
AECUM	

Project Location: Massillon, Ohio

Project Number:

er: 60439145

Log of Boring B-4

Sheet 2 of 2

ĺ	SAMPLES										
	Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer, tsf	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER DETAILS
	_	50		SS-8	2	88			becomes with interbedded lean clay lamina		Added water to and in
	-960	-							959.9 32.0		drilling
	_								Loose, wet, brown, sandy GRAVEL (GP-GM)		
	_	-	Π		4				_		
Σ	_	35		SS-9	6 3	33					
4:48 F	_				2				956.4 35.5 _ End of Boring at 35.5´ bgs _		
16 5:1	-955	-									
24/20	_	-								ļ	
PJ; 5/	_	-								-	
GS .G	_	_								-	
Q LO	_	-								-	
BORIN	-950	-								ļ	
DAM	_	-								+	
ОЧЧ	_	-								-	
S/SD(_	_								ł	
TS/LO	_	-								ł	
EMEN	-945	-								+	
PROV	-	-								+	
MI M	_	-									
IR DA	_									+	
ERVC	_	-	-							ł	
<pre>< RES</pre>	-940	-								ł	
CREEL	_	-									
PPO (-	-									
:TS/SI	_	_	-							ł	
SOJEC	-	-									
OP/PF	-935	-	-								
ESKT	_	-									
Keld K	_	-	-								
ы Б	_	-	-								
S/CHE	_	-	-								
JSER	-930	-									
le C:\L	-	-	-								
CR: F	-	-	-								
GEO	_	-					1		1	I	1
eport:											
۳L									AECUM		

MOISTURE CONTENT

ASTM D 2216-10

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001

Lab ID:	001	002	003	004	005	
Boring No.:	B1	B1	B1	B1	B2	
Depth (ft):	1.0-2.5	6.0-7.5	13.5-15.5	28.5-30.0	6.0-7.5	
Sample No.:	SS-1	SS-3	SS-5	SS-8	SS-3	
Tare Number	65	10	18	49	17	
Wt. of Tare & Wet Sample (g)	71.31	23.17	36.17	66.07	21.94	
Wt. of Tare & Dry Sample (g)	66.97	20.38	32.62	57.85	20.69	
Weight of Tare (g)	6.99	6.92	7.02	7.10	7.04	
Weight of Water (g)	4.34	2.79	3.55	8.22	1.25	
Weight of Dry Sample (g)	59.98	13.46	25.60	50.75	13.65	
Water Content (%)	7.2	20.7	13.9	16.2	9.2	
Lab ID	007	008	009	010		
Boring No.	B3	B3	B3	B4		
Depth (ft)	3.5-5.5	6.0-7.5	18.5-20.5	1.0-2.5		
Sample No.	SS-2	SS-3	SS-6	SS-1		
Tare Number	46	57	45	40		
Wt. of Tare & Wet Sample (g)	35.51	36.13	48.72	20.49		
Wt. of Tare & Dry Sample (g)	32.54	32.04	42.55	19.44		
Weight of Tare (g)	6.92	6.94	7.02	7.24		
Weight of Water (g)	2.97	4.09	6.17	1.05		
Weight of Dry Sample (g)	25.62	25.10	35.53	12.20		
Water Content (%)	11.6	16.3	17.4	8.6		
Notes :						
Tested By JP	Date	10/20/15	Checked By	CLK	Date	10/22/15
page 1 of 1 DCN: CT-S1 DA	TE: 3/18/13 REVISION	: 4				

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

MOISTURE CONTENT

ASTM D 2216-10

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001

Lab ID:	011	012
Boring No.:	B4	B4
Depth (ft):	3.5-5.5	8.5-10.5
Sample No.:	SS-2	SS-4
Tare Number	11	26
Wt. of Tare & Wet Sample (g)	30.83	33.83
Wt. of Tare & Dry Sample (g)	28.27	31.88
Weight of Tare (g)	6.89	6.96
Weight of Water (g)	2.56	1.95
Weight of Dry Sample (g)	21.38	24.92
Water Content (%)	12.0	7.8

Notes :

Tested By

Date

Checked By

CLK

Date 10/22/15

page 1 of 1

DCN: CT-S1 DATE: 3/18/13 REVISION: 4

JP

S:\Excel\Excel Qa\Spreadsheets\Water Content.xls

10/20/15

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-002

Boring No.:B-1Depth (ft):6.0-7.5Sample No.:SS-3Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4 #4 To #200 Finer Than #200	Gravel Sand Silt & Clay	0.30 36.73 62.97	
<u>USCS Symbol:</u> CL, TESTED			
USCS Classification: SANDY LEAN CLAY			

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	AECOM	Boring No.:	B-1
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	6.0-7.5
Project No.:	2015-550-001	Sample No.:	SS-3
Lab ID:	2015-550-001-002	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMARY	Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	3.31	0.00
2	96.69	Sand	39.89	41.26
0.05	56.79	Silt	40.55	41.94
0.002	16.24	Clay	16.24	16.80
		USDA Classification: LC	DAM	

page 2 of 4 DCN: CT-

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

ASTM D 422-63 (2007)

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001
Lab ID:	2015-550-001-002

Boring No.:	B-1
Depth (ft):	6.0-7.5
Sample No.:	SS-3
Soil Color:	Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material	
Tare No.	1441	Tare No.	NA
Weight of Tare & Wet Sample (g)	302.73	Weight of Tare & Wet Sample (g)	NA
Weight of Tare & Dry Sample (g)	302.73	Weight of Tare & Dry Sample (g)	NA
Weight of Tare (g)	143.89	Weight of Tare (g)	NA
Weight of Water (g)	0.00	Weight of Water (g)	NA
Weight of Dry Sample (g)	158.84	Weight of Dry Sample (g)	NA
Moisture Content (%)	0.0	Moisture Content (%)	NA
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	158 84
Dry Weight of -3/4" Sample (g)	58 82	Weight of - #200 Material (g)	100.03
Wet Weight of $+3/4$ " Sample (g)	NA	Weight of $+$ #200 Material (g)	58.82
Dry Weight of $+3/4$ " Sample (g)	0.00	1001gin 01 - 1/200	
Total Dry Weight of Sample (g)	NA		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	0.48	0.30	0.30	99.70	99.70
#10	2.00	4.79	3.01	3.31	96.69	96.69
#20	0.85	12.03	7.57	10.89	89.11	89.11
#40	0.425	8.67	5.46	16.35	83.65	83.65
#60	0.250	11.68	7.35	23.70	76.30	76.30
#140	0.106	16.20	10.20	33.90	66.10	66.10
#200	0.075	4.97	3.13	37.03	62.97	62.97
Pan	-	100.03	62.97	100.00	 -	-

	Tested By	JP	Date	10/24/15	Checked By	KC	Date	11/2/15
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	AECOM	Boring No.:	B-1
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	6.0-7.5
Project No.:	2015-550-001	Sample No.:	SS-3
Lab ID:	2015-550-001-002	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	N	K	Diameter	N'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	33.0	22	6.36	26.6	78.3	0.01313	0.0306	49.3
5	28.0	22	6.36	21.6	63.6	0.01313	0.0201	40.1
15	24.5	22	6.36	18.1	53.3	0.01313	0.0119	33.6
30	21.5	22	6.36	15.1	44.5	0.01313	0.0086	28.0
60	19.0	22.1	6.33	12.7	37.3	0.01311	0.0061	23.5
250	15.5	22	6.36	9.1	26.9	0.01313	0.0031	16.9
1440	14.5	22.7	6.11	8.4	24.7	0.01302	0.0013	15.5

Soil Specimen Data		Other Corrections		
Tare No.	644			
Weight of Tare & Dry Material (g)	138.61	a - Factor	0.99	
Weight of Tare (g)	99.94			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	62.97	
Weight of Dry Material (g)	33.7			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	10/27/15	Checked By	KC	Date	11/2/15	
page 4 of 4		DCN: CT-S3A	DATE: 3/18/13 REVISION:	11			S:Excel\Excel QA\Spre	eadsheets\SieveH	lyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Client:	AECOM				Boring No.:	B-1	
Client Reference:	Sippo Crk. I	Dam Reserv	oir 60439	145	Depth (ft):	6.0-7.5	
Project No.:	2015-550-0	01			Sample No.:	SS-3	
Lab ID:	2015-550-0	01-002		S	oil Description:	BROWN LEAN CLA	Y
Note: The USCS syml	bol used with	this test refe	ers only to	o the minus N	lo. 40	(Minus No. 40 sieve mate	erial, Airdried)
sieve material. See the	e "Sieve and F	lydrometer A	Analysis" (graph page f	or the complete	material description .	
Liquid Limit Test	:	1	2	3			
						Μ	
Tare Number:		1245	293	459		U	
Wt. of Tare & Wet Sar	mple (g):	31.23	32.79	30.37		L	
Wt. of Tare & Dry San	nple (g):	28.11	29.82	27.16		Т	
Weight of Tare (g):		15.87	18.35	15.39		I	
Weight of Water (g):		3.1	3.0	3.2		Р	
Weight of Dry Sample	e (g):	12.2	11.5	11.8		0	
						I	
Moisture Content (%	»):	25.5	25.9	27.3		Ν	
Number of Blows:		35	26	18		Т	
Plastic Limit Test	t	1	2	Range		Test Results	
Tara Numbari		1070	1000			Liquid Limit (0)	26
Mit of Taro & Wot Sa	mplo (a):	1279	17 24			Liquid Linni (%).	20
Wt. of Tare & Met Sal	mple (g).	20.42	16.43			Plactic Limit (%):	16
Weight of Tare (g):	npie (g).	14.00	10.45				10
Weight of Water (g).		0.9	0.75			Plasticity Index (%)	· 10
Weight of Dry Sample	, (a).	5.5	5.6			i lasticity maex (70)	. 10
Weight of Bry Gampie	/ (9).	0.0	0.0			USCS Symbol	CI
Moisture Content (%	.):	16.5	16.1	0.4			ŰĽ
Note: The acceptable	range of the	two Moistur	e content	s is ± 2.6			
	Flow Curve				PI	asticity Chart	
						2	
28				60			
27				-			
				50		, ,	
26		_ \& -		-	CL	, CH	
%				2 40			
ž ²⁵) xe			
ante l				lnde			
Ů 24				³⁰	,		
23 E				stic			WH
≥ [Pa 20			
22				-			
				10			
21							
20					ML		
1	10		100	0	20 40	60 80	
	Number of Bl	ows		CI - MI	Liqu	uid Limit (%)	100
Tested By TO	Date	10/21/15	Chec	cked By	CLK	Date 10/23/15	
page 1 of 1 DCN: CTS4B, RE	EV. 4, 3/18/13						

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-003

Boring No.: B-1 Depth (ft): 13.5-15.5 Sample No.: SS-5 Soil Color: Brown

ASTM D 422-63 (2007)

 Client:
 AECOM

 Client Reference:
 Sippo Crk. Dam Reservoir 60439145

 Project No.:
 2015-550-001

 Lab ID:
 2015-550-001-003

Boring No.: B-1 Depth (ft): 13.5-15.5 Sample No.: SS-5 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1448	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	330.91	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	304.97	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	138.61	Weight of Tare (g):	NA
Weight of Water (g):	25.94	Weight of Water (g):	NA
Weight of Dry Sample (g):	166.36	Weight of Dry Sample (g):	NA
Moisture Content (%):	15.6	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	166.36
Drv Weight of - 3/4" Sample (g):	80.7	Weight of - #200 Material (g):	39.73
Wet Weight of +3/4" Sample (g):	NA	Weight of + #200 Material (g):	126.63
Dry Weight of $+ 3/4$ " Sample (g):	45.95		
Total Dry Woight of Sample (g):			I

	0.		<u> </u>			
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	45.95	27.62	27.62	72.38	72.38
1/2"	12.50	5.82	3.50	31.12	68.88	68.88
3/8"	9.50	8.81	5.30	36.42	63.58	63.58
#4	4.75	15.30	9.20	45.61	54.39	54.39
#10	2.00	15.13	9.09	54.71	45.29	45.29
#20	0.850	13.60	8.18	62.88	37.12	37.12
#40	0.425	8.00	4.81	67.69	32.31	32.31
#60	0.250	5.34	3.21	70.90	29.10	29.10
#140	0.106	5.38	3.23	74.13	25.87	25.87
#200	0.075	3.30	1.98	76.12	23.88	23.88
Pan	_	39.73	23.88	100.00	-	-

	Tested By	HL	Date	10/22/15	Checked By	KC	Date	10/24/15
page 2 of 2		DCN: CT-S3C D	ATE 3/20/13 REV	/ISION: 3				

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-004

Boring No.: B-1 Depth (ft): 28.5-30.0 Sample No.: SS-8 Soil Color: Brown

ASTM D 422-63 (2007)

 Client:
 AECOM

 Client Reference:
 Sippo Crk. Dam Reservoir 60439145

 Project No.:
 2015-550-001

 Lab ID:
 2015-550-001-004

Boring No.: B-1 Depth (ft): 28.5-30.0 Sample No.: SS-8 Soil Color: Brown

Moisture Content of Passing 3/4" S	Sample	Water Content of Retained 3/4" Sample	
Tare No.:	1447	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	545.90	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	494.70	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	145.30	Weight of Tare (g):	NA
Weight of Water (g):	51.20	Weight of Water (g):	NA
Weight of Dry Sample (g):	349.40	Weight of Dry Sample (g):	NA
	14.7 Moisture Content (%):		NA
Moisture Content (%):	14.7	Moisture Content (%):	NA
Moisture Content (%):	14.7 NA	Moisture Content (%): Weight of the Dry Sample (g):	NA 349.40
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	14.7 NA 281.0	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g):	NA 349.40 48.64
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	14.7 NA 281.0 NA	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	NA 349.40 48.64 300.76
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	14.7 NA 281.0 NA 19.72	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	NA 349.40 48.64 300.76

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	19.72	5.64	5.64	94.36	94.36
3/4"	19.0	0.00	0.00	5.64	94.36	94.36
1/2"	12.50	57.24	16.38	22.03	77.97	77.97
3/8"	9.50	20.87	5.97	28.00	72.00	72.00
#4	4.75	40.04	11.46	39.46	60.54	60.54
#10	2.00	48.71	13.94	53.40	46.60	46.60
#20	0.850	35.32	10.11	63.51	36.49	36.49
#40	0.425	26.95	7.71	71.22	28.78	28.78
#60	0.250	22.06	6.31	77.54	22.46	22.46
#140	0.106	22.36	6.40	83.94	16.06	16.06
#200	0.075	7.49	2.14	86.08	13.92	13.92
Pan	-	48.64	13.92	100.00	-	-

	Tested By	HL	Date	10/22/15	Checked By	KC	Date	10/24/15
page 2 of 2		DCN: CT-S3C D	ATE 3/20/13 REV	/ISION: 3				

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-005

Boring No.: B-2 Depth (ft): 6.0-7.5 Sample No.: SS-3 Soil Color: Brown

ASTM D 422-63 (2007)

 Client:
 AECOM

 Client Reference:
 Sippo Crk. Dam Reservoir 60439145

 Project No.:
 2015-550-001

 Lab ID:
 2015-550-001-005

Boring No.: B-2 Depth (ft): 6.0-7.5 Sample No.: SS-3 Soil Color: Brown

Moisture Content of Passing 3/4" Sa	ample	Water Content of Retained 3/4" Sample	
Tare No.:	1425	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	351.47	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	341.27	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	144.97	Weight of Tare (g):	NA
Weight of Water (g):	10.20	Weight of Water (g):	NA
Weight of Dry Sample (g):	196.30	Weight of Dry Sample (g):	NA
Moisture Content (%):	5.2	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	196.30
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	NA 74.7	Weight of the Dry Sample (g): Weight of - #200 Material (g):	196.30 13.99
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	NA 74.7 NA	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	196.30 13.99 182.31
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 74.7 NA 107.66	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	196.30 13.99 182.31

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	74.47	37.94	37.94	62.06	62.06
3/4"	19.0	33.19	16.91	54.84	45.16	45.16
1/2"	12.50	13.79	7.02	61.87	38.13	38.13
3/8"	9.50	2.30	1.17	63.04	36.96	36.96
#4	4.75	8.40	4.28	67.32	32.68	32.68
#10	2.00	6.17	3.14	70.46	29.54	29.54
#20	0.850	4.11	2.09	72.56	27.44	27.44
#40	0.425	5.58	2.84	75.40	24.60	24.60
#60	0.250	17.12	8.72	84.12	15.88	15.88
#140	0.106	14.81	7.54	91.67	8.33	8.33
#200	0.075	2.37	1.21	92.87	7.13	7.13
Pan	-	13.99	7.13	100.00	-	-

	Tested By	HL	Date	10/22/15	Checked By	KC	Date	10/24/15
page 2 of 2		DCN: CT-S3C DA	ATE 3/20/13 REV	'ISION: 3				

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-006

Boring No.: B-2 Depth (ft): 18.5-20.5 Sample No.: SS-6 Soil Color: Brown

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

ASTM D 422-63 (2007)

 Client:
 AECOM

 Client Reference:
 Sippo Crk. Dam Reservoir 60439145

 Project No.:
 2015-550-001

 Lab ID:
 2015-550-001-006

Boring No.: B-2 Depth (ft): 18.5-20.5 Sample No.: SS-6 Soil Color: Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample	
Tare No.:	1429	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	330.08	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	318.73	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	144.84	Weight of Tare (g):	NA
Weight of Water (g):	11.35	Weight of Water (g):	NA
Weight of Dry Sample (g):	173.89	Weight of Dry Sample (g):	NA
		.5 Moisture Content (%):	
Moisture Content (%):	6.5	Moisture Content (%):	NA
Moisture Content (%):	6.5 NA	Weight of the Dry Sample (g):	NA 173.89
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	6.5 NA 143.7	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g):	NA 173.89 15.76
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	6.5 NA 143.7 NA	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	NA 173.89 15.76 158.13
Moisture Content (%): Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	6.5 NA 143.7 NA 14.39	Moisture Content (%): Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	NA 173.89 15.76 158.13

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	14.39	8.28	8.28	91.72	91.72
1/2"	12.50	30.54	17.56	25.84	74.16	74.16
3/8"	9.50	14.12	8.12	33.96	66.04	66.04
#4	4.75	27.86	16.02	49.98	50.02	50.02
#10	2.00	37.46	21.54	71.52	28.48	28.48
#20	0.850	17.95	10.32	81.84	18.16	18.16
#40	0.425	6.80	3.91	85.76	14.24	14.24
#60	0.250	3.12	1.79	87.55	12.45	12.45
#140	0.106	4.03	2.32	89.87	10.13	10.13
#200	0.075	1.86	1.07	90.94	9.06	9.06
Pan	-	15.76	9.06	100.00	-	-

	Tested By	HL	Date	10/22/15	Checked By	KC	Date	10/24/15
page 2 of 2		DCN: CT-S3C DAT	E 3/20/13 REV	ISION: 3				

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-007

Boring No.:B-3Depth (ft):3.5-5.5Sample No.:SS-2Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4 #4 To #200 Finer Than #200	Gravel Sand Silt & Clay	0.54 70.93 28.54	
USCS Symbol: SC-SM, TESTED			
USCS Classification: SILTY, CLAYEY SAND			

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	AECOM	Boring No.:	B-3
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	3.5-5.5
Project No.:	2015-550-001	Sample No.:	SS-2
Lab ID:	2015-550-001-007	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMAR	Y Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	11.33	0.00
2	88.67	Sand	63.82	71.98
0.05	24.85	Silt	20.61	23.24
0.002	4.24	Clay	4.24	4.78
		USDA Classification:	SANDY LOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

ASTM D 422-63 (2007)

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001
Lab ID:	2015-550-001-007

Boring No	o.: B-3
Depth (ft)): 3.5-5.5
Sample N	lo.: SS-2
Soil Colo	r: Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material		
Tare No.	1420	Tare No.	NA	
Weight of Tare & Wet Sample (g)	338.83	Weight of Tare & Wet Sample (g)	NA	
Weight of Tare & Dry Sample (g)	338.83	Weight of Tare & Dry Sample (g)	NA	
Weight of Tare (g)	144.70	Weight of Tare (g)	NA	
Weight of Water (g)	0.00	Weight of Water (g)	NA	
Weight of Dry Sample (g)	194.13	Weight of Dry Sample (g)	NA	
Moisture Content (%)	0.0	Moisture Content (%)	NA	
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	194.13	
Dry Weight of -3/4" Sample (g)	138.73	Weight of - #200 Material (g)	55.40	
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	138.73	
Dry Weight of $+3/4$ " Sample (g) 0.00				
Total Dry Weight of Sample (g)	NA			

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	1.04	0.54	0.54	99.46	99.46
#10	2.00	20.96	10.80	11.33	88.67	88.67
#20	0.85	35.50	18.29	29.62	70.38	70.38
#40	0.425	29.52	15.21	44.83	55.17	55.17
#60	0.250	25.57	13.17	58.00	42.00	42.00
#140	0.106	20.07	10.34	68.34	31.66	31.66
#200	0.075	6.07	3.13	71.46	28.54	28.54
Pan	-	55.40	28.54	100.00	-	-

	Tested By	HL	Date	10/29/15	Checked By	KC	Date	11/2/15
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION:	11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	AECOM	Boring No.:	B-3
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	3.5-5.5
Project No.:	2015-550-001	Sample No.:	SS-2
Lab ID:	2015-550-001-007	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	Ν	К	Diameter	Ν'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	22.5	23.1	5.97	16.5	73.4	0.01296	0.0325	20.9
5	20.0	23.1	5.97	14.0	62.3	0.01296	0.0209	17.8
15	16.5	23.1	5.97	10.5	46.7	0.01296	0.0123	13.3
30	15.0	23.1	5.97	9.0	40.1	0.01296	0.0088	11.4
60	13.5	22.4	6.22	7.3	32.3	0.01307	0.0063	9.2
250	10.0	22.6	6.15	3.9	17.1	0.01303	0.0032	4.9
1440	9.0	22.7	6.11	2.9	12.8	0.01302	0.0013	3.7

Soil Specimen Data		Other Corrections		
Tare No.	929			
Weight of Tare & Dry Material (g)	127.54	a - Factor	0.99	
Weight of Tare (g)	100.23			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	28.54	
Weight of Dry Material (g)	22.3			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	10/26/15	Checked By	KC	Date	11/2/15	
page 4 of 4		DCN: CT-S3A	DATE: 3/18/13 REVISION:	11			S:Excel\Excel QA\Spre	eadsheets\SieveH	łyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Project No 2015-550-001 Sample No SS-2 Lab ID: 2015-550-001-007 Soil Description: BROWN SILTY CLA Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve mate)	Y erial, Airdried)
Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve mate	erial, Airdried)
	-, -,
sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description .	
Liquid Limit Test 1 2 3	
M	
Tare Number: 206 301 156 U	
Wt. of Tare & Wet Sample (g): 38.76 39.03 39.13 L	
Wt. of Tare & Dry Sample (g): 34.69 35.47 35.25 T	
Weight of Tare (g): 18.41 18.70 18.87 I	
Weight of Water (g): 4.1 3.6 3.9 P	
vveight of Dry Sample (g): 16.3 16.8 16.4 U	
Mainture Contant (9/), 25.0 24.2 22.7 N	
Number of Blows: 16 35 27 T	
Plastic Limit Test 1 2 Range Test Results	
Tare Number:231167Liquid Limit (%):	23
Wt. of Tare & Wet Sample (g): 26.04 24.85	
Wt. of Tare & Dry Sample (g): 25.10 23.93 Plastic Limit (%):	17
Weight of Tare (g): 19.67 18.42	_
Weight of Water (g): 0.9 0.9 Plasticity Index (%)	: 6
Weight of Dry Sample (g): 5.4 5.5	
	CL-ML
Note: The accentable range of the two Moisture contents is + 2.6	
Flow Curve	
26 25 26 25 26 26 26 26 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	
	мн
	 100
Number of Blows <i>CL- ML</i> Liquid Limit (%)	100
Tested By RAI Date 10/23/15 Checked By CLK Date 10/26/15	
page 1 of 1 DCN: CTS4B, REV. 4, 3/18/13	

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-008

Boring No.:B-3Depth (ft):6.0-7.5Sample No.:SS-3Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)	-		
Greater Than #4 #4 To #200 Finer Than #200	Gravel Sand Silt & Clay	2.71 56.55 40.75	
USCS Symbol: SC, TESTED			
USCS Classification: CLAYEY SAND			

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	AECOM	Boring No.:	B-3
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	6.0-7.5
Project No.:	2015-550-001	Sample No.:	SS-3
Lab ID:	2015-550-001-008	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMAR	Y Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	14.36	0.00
2	85.64	Sand	48.62	56.78
0.05	37.02	Silt	25.52	29.80
0.002	11.50	Clay	11.50	13.43
		USDA Classification:	SANDY LOAM	

page 2 of 4 DCN: CT-S3A DATE:

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

ASTM D 422-63 (2007)

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001
Lab ID:	2015-550-001-008

Boring No.:B-3Depth (ft):6.0-7.5Sample No.:SS-3Soil Color:Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material	
Tare No.	1437	Tare No.	NA
Weight of Tare & Wet Sample (g)	347.62	Weight of Tare & Wet Sample (g)	NA
Weight of Tare & Dry Sample (g)	347.62	Weight of Tare & Dry Sample (g)	NA
Weight of Tare (g)	144.73	Weight of Tare (g)	NA
Weight of Water (g)	0.00	Weight of Water (g)	NA
Weight of Dry Sample (g)	202.89	Weight of Dry Sample (g)	NA
Moisture Content (%)	0.0	Moisture Content (%)	NA
			000.00
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	202.89
Dry Weight of -3/4" Sample (g)	120.22	Weight of - #200 Material (g)	82.67
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	120.22
		-	
Dry Weight of +3/4" Sample (g)	0.00		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	1.02	0.50	0.50	99.50	99.50
#4	4.75	4.47	2.20	2.71	97.29	97.29
#10	2.00	23.65	11.66	14.36	85.64	85.64
#20	0.85	30.50	15.03	29.40	70.60	70.60
#40	0.425	23.74	11.70	41.10	58.90	58.90
#60	0.250	16.84	8.30	49.40	50.60	50.60
#140	0.106	14.94	7.36	56.76	43.24	43.24
#200	0.075	5.06	2.49	59.25	 40.75	40.75
Pan	-	82.67	40.75	100.00	-	-

	Tested By	HL	Date	10/28/15	Checked By	KC	Date	11/2/15
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION:	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	AECOM	Boring No.:	B-3
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	6.0-7.5
Project No.:	2015-550-001	Sample No.:	SS-3
Lab ID:	2015-550-001-008	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	Ν	К	Diameter	Ν'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	19.0	22.7	6.11	12.9	81.8	0.01302	0.0334	33.3
5	17.5	22.7	6.11	11.4	72.2	0.01302	0.0213	29.4
15	15.5	22.7	6.11	9.4	59.6	0.01302	0.0125	24.3
30	14.0	22.7	6.11	7.9	50.0	0.01302	0.0089	20.4
60	12.5	22.6	6.15	6.4	40.3	0.01303	0.0064	16.4
250	11.0	22.7	6.11	4.9	31.0	0.01302	0.0031	12.6
1440	10.0	23.1	5.97	4.0	25.6	0.01296	0.0013	10.4

Soil Specimen Data		Other Corrections		
Tare No.	927			
Weight of Tare & Dry Material (g)	118.55	a - Factor	0.99	
Weight of Tare (g)	97.94			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	40.75	
Weight of Dry Material (g)	15.6			
		Specific Gravity	2.7	Assumed
		· · ·		

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	10/28/15	Checked By	KC	Date	11/2/15	
page 4 of 4		DCN: CT-S3A	DATE: 3/18/13 REVISION:	11			S:Excel\Excel QA\Sprea	adsheets\SieveH	lyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Client:	AECOM				Boring No.:	B-3	
Client Reference:	Sippo Crk. E	Dam Reserve	oir 60439	145	Depth (ft):	6.0-7.5	
Project No.:	2015-550-00	D1			Sample No.:	SS-3	
Lab ID:	2015-550-00	01-008		S	oil Description:	BROWN LEAN CLA	Y
Note: The USCS syml	bol used with	this test refe	rs only to	the minus N	lo. 40	(Minus No. 40 sieve mate	erial, Airdried)
sieve material. See the	e "Sieve and H	ydrometer A	nalysis" (graph page fo	or the complete	material description .	
Liquid Limit Test		1	2	3			
						M	
Tare Number:		235	320	325		U	
vvt. of Tare & vvet Sal	mple (g):	39.78	40.44	41.25		L	
Weight of Tare & Dry San	npie (g):	35.05	30.37	30.73			
Weight of Motor (g).		10.74	19.90	10.00		I D	
Weight of Dry Sample	(a):	4.1	4.1 16.5	4.5		F O	
vieignt of Dry Sample	; (g).	10.9	10.5	17.5		U	
Moisture Content (%	<u>۱</u> .	21 1	24 7	25.2		N	
Number of Blows	·)-	32	24.7	16		Т	
Rumber of Biows.		02	20	10			
Plastic Limit Test	t	1	2	Range		Test Results	
Tare Number:		169	183			Liquid Limit (%):	25
Wt. of Tare & Wet Sar	mple (g):	25.43	25.27				
Wt. of Tare & Dry San	nple (g):	24.65	24.52			Plastic Limit (%):	14
Weight of Tare (g):		19.28	19.28				
Weight of Water (g):		0.8	0.8			Plasticity Index (%)	: 11
Weight of Dry Sample	e (g):	5.4	5.2				0
Moisture Content (%	<u>ر.</u>	14 5	1/ 3	0.2		USCS Symbol:	CL
Note: The acceptable	range of the	two Moisture	e content	s is + 2 6			
	Flow Curve			0.10 - 2.10	PI	asticity Chart	
				60			
25				50			
				-	CL	, CH	
				\$ 40			
t i) Xa			
				pul			
				Sity 30			
ate				istic			
S 22				ed 20			
				-			
21				10	\sim		
20					, ML		
1	10		100	° –	20 40	60 80	100
	Numper of Blo	DWS		CL- ML	Liqu	uid Limit (%)	
Tested By ID	Data	10/21/15	Chor	kod By	CIK	Data 10/26/15	
		10/24/10	Chet	neu Dy	ULN	Date 10/20/13	
Page I UI I DUN: CIS4B, RE	_v. 4, J/ 10/ 13						

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-009

Boring No.: B-3 Depth (ft): 18.5-20.5 Sample No.: SS-6 Soil Color: Brown

	Tested by	ΠL	Dale	10/22/15	Спескей ву	RC	Dale	10/24/15
page 1 of 2		DCN: CT-S3C D/	ATE 3/20/13 REV	/ISION: 3				

ASTM D 422-63 (2007)

 Client:
 AECOM

 Client Reference:
 Sippo Crk. Dam Reservoir 60439145

 Project No.:
 2015-550-001

 Lab ID:
 2015-550-001-009

Boring No.: B-3 Depth (ft): 18.5-20.5 Sample No.: SS-6 Soil Color: Brown

Moisture Content of Passing 3/4" Sample		Water Content of Retained 3/4" Sample		
Tare No.:	1456	Tare No.:	NA	
Wt. of Tare & Wet Sample (g):	428.40	Weight of Tare & Wet Sample (g):	NA	
Wt. of Tare & Dry Sample (g):	391.89	Weight of Tare & Dry Sample (g):	NA	
Weight of Tare (g):	133.07	Weight of Tare (g):	NA	
Weight of Water (g):	36.51	Weight of Water (g):	NA	
Weight of Dry Sample (g):	258.82	Weight of Dry Sample (g):	NA	
Moisture Content (%):	14.1	Moisture Content (%):	NA	
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	258.82	
Dry Weight of - 3/4" Sample (g):	201.3	Weight of - #200 Material (g):	57.54	
Wet Weight of +3/4" Sample (g):	NA	Weight of + #200 Material (g):	201.28	
Dry Weight of + 3/4" Sample (g):	0.00			
Total Dry Weight of Sample (g):	NA			

0.	0.					
Sieve	Sieve	weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	46.76	18.07	18.07	81.93	81.93
3/8"	9.50	17.33	6.70	24.76	75.24	75.24
#4	4.75	34.64	13.38	38.15	61.85	61.85
#10	2.00	33.81	13.06	51.21	48.79	48.79
#20	0.850	25.92	10.01	61.22	38.78	38.78
#40	0.425	16.94	6.55	67.77	32.23	32.23
#60	0.250	9.37	3.62	71.39	28.61	28.61
#140	0.106	10.64	4.11	75.50	24.50	24.50
#200	0.075	5.87	2.27	77.77	22.23	22.23
Pan	-	57.54	22.23	100.00	-	-

	Tested By	HL	Date	10/22/15	Checked By	KC	Date	10/24/15
page 2 of 2		DCN: CT-S3C D/	ATE 3/20/13 REV	/ISION: 3				

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-010

Boring No.:B-4Depth (ft):1.0-2.5Sample No.:SS-1Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	21.64	
#4 To #200	Sand	28.53	
Finer Than #200	Silt & Clay	49.83	
USCS Symbol: SC, TESTED USCS Classification:			
CLAYEY SAND WITH	I GRAVEL		

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	AECOM	Boring No.:	B-4
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	1.0-2.5
Project No.:	2015-550-001	Sample No.:	SS-1
Lab ID:	2015-550-001-010	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMARY	Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	22.83	0.00
2	77.17	Sand	32.19	41.72
0.05	44.98	Silt	29.14	37.76
0.002	15.84	Clay	15.84	20.52
		USDA Classification:	ОАМ	

page 2 of 4 DCN: CT-S3

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

ASTM D 422-63 (2007)

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001
Lab ID:	2015-550-001-010

Boring No.:	B-4
Depth (ft):	1.0-2.5
Sample No.:	SS-1
Soil Color:	Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material	
Tare No.	1439	Tare No.	NA
Weight of Tare & Wet Sample (g)	344.69	Weight of Tare & Wet Sample (g)	NA
Weight of Tare & Dry Sample (g)	344.69	Weight of Tare & Dry Sample (g)	NA
Weight of Tare (g)	145.05	Weight of Tare (g)	NA
Weight of Water (g)	0.00	Weight of Water (g)	NA
Weight of Dry Sample (g)	199.64	Weight of Dry Sample (g)	NA
Moisture Content (%)	0.0	Moisture Content (%)	NA
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	199.64
Dry Weight of -3/4" Sample (g)	74.61	Weight of - #200 Material (g)	99.48
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	100.16
Dry Weight of +3/4" Sample (g)	25.55		
Total Dry Weight of Sample (g)	NA		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	17.44	8.74	8.74	91.26	91.26
3/4"	19.0	8.11	4.06	12.80	87.20	87.20
1/2"	12.5	7.13	3.57	16.37	83.63	83.63
3/8"	9.50	10.53	5.27	21.64	78.36	78.36
#4	4.75	0.00	0.00	21.64	78.36	78.36
#10	2.00	2.37	1.19	22.83	77.17	77.17
#20	0.85	14.49	7.26	30.09	69.91	69.91
#40	0.425	15.56	7.79	37.88	62.12	62.12
#60	0.250	10.49	5.25	43.14	56.86	56.86
#140	0.106	9.80	4.91	48.05	51.95	51.95
#200	0.075	4.24	2.12	50.17	49.83	49.83
Pan	-	99.48	49.83	100.00	-	-

	Tested By	HL	Date	10/28/15	Checked By	KC	Date	11/2/15
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION:	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference:	AECOM Sippo Crk. Dam Reservoir 60439145	Boring No.: Depth (ft):	B-4 1.0-2.5
Project No.:	2015-550-001	Sample No.:	SS-1
Lab ID:	2015-550-001-010	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	N	K	Diameter	N'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	23.0	22.7	6.11	16.9	80.0	0.01302	0.0326	39.8
5	20.0	22.7	6.11	13.9	65.8	0.01302	0.0210	32.8
15	17.5	22.7	6.11	11.4	53.9	0.01302	0.0123	26.9
30	16.5	22.7	6.11	10.4	49.2	0.01302	0.0088	24.5
60	15.0	22.6	6.15	8.9	41.9	0.01303	0.0063	20.9
250	13.5	22.7	6.11	7.4	35.0	0.01302	0.0031	17.4
1440	12.0	23.1	5.97	6.0	28.6	0.01296	0.0013	14.2

Soil Specimen Data		Other Corrections		
Tare No.	633			
Weight of Tare & Dry Material (g)	121.94	a - Factor	0.99	
Weight of Tare (g)	96.03			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	49.83	
Weight of Dry Material (g)	20.9			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	10/28/15	Checked By	KC	Date	11/2/15	
page 4 of 4		DCN: CT-S3A D	ATE: 3/18/13 REVISION:	11			S:Excel\Excel QA\Spre	adsheets\SieveF	lyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Client:	AECOM				Boring No.:	B-4	
Client Reference:	ce: Sippo Crk. Dam Reservoir 60439145				Depth (ft):	1.0-2.5	
Project No.:	2015-550-0	01			Sample No.:	SS-1	
Lab ID:	2015-550-0	01-010		S	Soil Description:	BROWN LEAN CLAY	
Note: The USCS syml	bol used with	this test refe	ers only to	the minus N	Vo. 40	(Minus No. 40 sieve materia	l, Airdried)
sieve material. See the	e "Sieve and H	lydrometer A	Analysis" g	graph page f	or the complete	material description .	
Liquid Limit Test		1	2	3			
			a / -	•• -		M	
Tare Number:		215	217	227		U	
vvt. of Tare & vvet Sal	mple (g):	32.21	32.99	30.64		L	
Weight of Tare & Dry San	npie (g):	29.04	29.08	27.00			
Weight of Mater (g).		10.30	10.00	17.00		I D	
Weight of Water (g).	(a):	3.Z 10.7	ა.ა 11 0	3.0		P	
vieignt of Dry Sample	; (g).	10.7	11.0	9.9			
Moisture Content (%	<u>.</u>	29.7	30.0	30.6		N	
Number of Blows	<i>.</i>	32	27	19		T	
Rumber of Biows.		V L		10		•	
Plastic Limit Test	t	1	2	Range		Test Results	
Tare Number:		175	184			Liquid Limit (%):	30
Wt. of Tare & Wet Sar	mple (g):	25.81	25.83				
Wt. of Tare & Dry San	nple (g):	24.79	24.83			Plastic Limit (%):	20
Weight of Tare (g):		19.67	19.63				
Weight of Water (g):		1.0	1.0			Plasticity Index (%):	10
Weight of Dry Sample	e (g):	5.1	5.2				
Moisture Content (%	J.	10 0	19.2	07		USCS Symbol:	CL
Note: The acceptable	range of the	two Moistur	e content:	sis + 2 6			
	Flow Curve	the moletar	0 00/110/11		PI	asticity Chart	
³²				60		,	
				·			
30		_⊗_⊢		50			
				-	CL	. СН	
\$ 28							
u i i i i) Xa			
26 L				p n			
0 20 F				30 III			_
ate				stic			7
S 24				20	,		
				-			
22				10			
20					ML		
1	10		100	0	20 40	60 80	100
	Number of Bl	ows		CL- ML	Liqu	uid Limit (%)	
Tested By ID	Dato	10/21/15	Choo	kod By	CIK	Data 10/26/15	
name 1 of 1 port of a port		10/24/13	Criec	neu by	ULN	Dale 10/20/13	
payer or DUN: CIS4B, RE	=v. 4, 3/10/13						

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-011

Boring No.:B-4Depth (ft):3.5-5.5Sample No.:SS-2Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)	_	Percentage	
Greater Than #4 #4 To #200 Finer Than #200	Gravel Sand Silt & Clay	0.50 52.58 46.91	
USCS Symbol:			
SC, TESTED			
USCS Classification: CLAYEY SAND			

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

USDA CLASSIFICATION CHART

Client:	AECOM	Boring No.:	B-4
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	3.5-5.5
Project No.:	2015-550-001	Sample No.:	SS-2
Lab ID:	2015-550-001-011	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMAR	Y Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	4.36	0.00
2	95.64	Sand	53.93	56.39
0.05	41.71	Silt	35.63	37.26
0.002	6.08	Clay	6.08	6.36
		USDA Classification:	SANDY LOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001
Lab ID:	2015-550-001-011

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material	
Tare No.	1454	Tare No.	NA
Weight of Tare & Wet Sample (g)	323.32	Weight of Tare & Wet Sample (g)	NA
Weight of Tare & Dry Sample (g)	323.32	Weight of Tare & Dry Sample (g)	NA
Weight of Tare (g)	138.28	Weight of Tare (g)	NA
Weight of Water (g)	0.00	Weight of Water (g)	NA
Weight of Dry Sample (g)	185.04	Weight of Dry Sample (g)	NA
Moisture Content (%)	0.0	Moisture Content (%)	NA
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	185.04
Dry Weight of -3/4" Sample (g)	98.23	Weight of - #200 Material (g)	86.81
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	98.23
Dry Weight of +3/4" Sample (g)	0.00		
Total Dry Weight of Sample (g)	NA		

Boring No.: B-4 Depth (ft):

Sample No.: SS-2 Soil Color: Brown

3.5-5.5

0.	0.		D (
Sieve	Sieve	vveight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	0.93	0.50	0.50	99.50	99.50
#10	2.00	7.14	3.86	4.36	95.64	95.64
#20	0.85	11.07	5.98	10.34	89.66	89.66
#40	0.425	23.80	12.86	23.21	76.79	76.79
#60	0.250	29.03	15.69	38.89	61.11	61.11
#140	0.106	20.42	11.04	49.93	50.07	50.07
#200	0.075	5.84	3.16	53.09	46.91	46.91
Pan	-	86.81	46.91	100.00	-	-

	Tested By	HL	Date	10/29/15	Checked By	KC	Date	11/2/15
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:	AECOM	Boring No.:	B-4
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	3.5-5.5
Project No.:	2015-550-001	Sample No.:	SS-2
Lab ID:	2015-550-001-011	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	Ν	К	Diameter	N'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	27.0	23.1	5.97	21.0	76.3	0.01296	0.0316	35.8
5	23.0	23.1	5.97	17.0	61.8	0.01296	0.0205	29.0
15	18.5	23.1	5.97	12.5	45.5	0.01296	0.0122	21.3
30	16.5	23.1	5.97	10.5	38.2	0.01296	0.0087	17.9
60	14.5	22.4	6.22	8.3	30.1	0.01307	0.0063	14.1
250	10.5	22.6	6.15	4.4	15.8	0.01303	0.0031	7.4
1440	9.0	22.6	6.15	2.9	10.4	0.01303	0.0013	4.9

Soil Specimen Data		Other Corrections		
Tare No.	506			
Weight of Tare & Dry Material (g)	131.37	a - Factor	0.99	
Weight of Tare (g)	99.09			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	46.91	
Weight of Dry Material (g)	27.3			
		Specific Gravity	2.7	Assumed
		-		

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	10/29/15	Checked By	KC	Date	11/2/15	
page 4 of 4		DCN: CT-S3A	DATE: 3/18/13 REVISION:	11			S:Excel\Excel QA\Spre	adsheets\SieveH	lyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-011Nato:The USCS symbol used with this test refers only to the minute					Boring No.: Depth (ft): Sample No.: coil Description:	B-4 3.5-5.5 SS-2 BROWN LEAN CLAY (Minus No. 40 sieve material A	irdried)
sieve material. See the	e "Sieve and H	lydrometer A	nalysis" g	graph page f	or the complete	material description .	in an iou)
Liquid Limit Test		1	2	3			
						Μ	
Tare Number:		5	1101	242		U	
Wt. of Tare & Wet Sa	mple (g):	37.94	38.58	39.37		L	
Wt. of Tare & Dry Sar	mple (g):	32.24	33.17	34.15			
Weight of Mater (g).		17.14 5.7	10.20 5.4	19.14		I D	
Weight of Dry Sample	a (a).	0.7 15 1	5.4 15.0	5.Z 15.0		F O	
weight of big bampic	- (g).	10.1	10.0	10.0		U U	
Moisture Content (%	a):	37.7	36.1	34.8		N	
Number of Blows:	.,.	16	23	35		Т	
Plastic Limit Tes	t	1	2	Range		Test Results	
Tare Number:		185	118			Liquid Limit (%):	36
Wt. of Tare & Wet Sa	mple (g):	25.88	25.60				
Wt. of Tare & Dry Sar	mple (g):	24.85	24.59			Plastic Limit (%):	19
Weight of Tare (g):		19.38	19.33				
Weight of Water (g):		1.0	1.0			Plasticity Index (%):	17
Weight of Dry Sample	e (g):	5.5	5.3				
						USCS Symbol:	CL
Moisture Content (%	•):	18.8	19.2	-0.4			
Note: The acceptable	range of the	two <i>woisture</i>	e content	s is ± 2.6		acticity Chart	
	Flow Curve				FI	asticity chart	
40				60			7
38				-			
36				50			_
		♥ □		-	CL	. СН	
ê ³⁴							
t 32) Xa			
30 E							
Ŭ l				city	, , , , , , , , , , , , , , , , , , ,	мн	
				asti			
> 26				a ²⁰			
24				-			
				10			
					A		
20 E				0 /	ML		
1	10 Number of Bl	ows	100	0 / CL- ML	20 40 Liqu) 60 80 uid Limit (%)	100
Tostod By DAI	Data	10/22/15	Choo	kod By		Data 10/26/15	
nage 1 of 1 DON: CTEAP DI	Dale EV 4 3/18/13	10/23/13	Criec	neu Dy	ULN	Date 10/20/13	
	, 0, 10, 10						

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-012

Boring No.:B-4Depth (ft):8.5-10.5Sample No.:SS-4Soil Color:Brown

	USCS Summary		
Sieve Sizes (mm)		Percentage	
One stars These #4	Orrest	0.00	
Greater I nan #4	Gravel	0.26	
#4 To #200	Sand	83.99	
Finer Than #200	Silt & Clay	15.76	
<u>USCS Symbol:</u> SM, TESTED			
USCS Classification: SILTY SAND			
(NON-PLASTIC FINES	5)		
page 1 of 4 DCN: C	CT-S3A DATE: 3/18/13 REVISION: 11		

USDA CLASSIFICATION CHART

Client:	AECOM	Boring No.:	B-4
Client Reference:	Sippo Crk. Dam Reservoir 60439145	Depth (ft):	8.5-10.5
Project No.:	2015-550-001	Sample No.:	SS-4
Lab ID:	2015-550-001-012	Soil Color:	Brown

PERCENT SAND

Particle	Percent	USDA SUMMAR	Y Actual	Corrected % of Minus 2.0 mm
Size	Finer		Percentage	material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	11.33	0.00
2	88.67	Sand	74.82	84.38
0.05	13.85	Silt	10.36	11.68
0.002	3.49	Clay	3.49	3.94
		USDA Classification:	LOAMY SAND	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:	AECOM
Client Reference:	Sippo Crk. Dam Reservoir 60439145
Project No.:	2015-550-001
Lab ID:	2015-550-001-012

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material	
Tare No.	1434	Tare No.	NA
Weight of Tare & Wet Sample (g)	383.04	Weight of Tare & Wet Sample (g)	NA
Weight of Tare & Dry Sample (g)	359.56	Weight of Tare & Dry Sample (g)	NA
Weight of Tare (g)	145.00	Weight of Tare (g)	NA
Weight of Water (g)	23.48	Weight of Water (g)	NA
Weight of Dry Sample (g)	214.56	Weight of Dry Sample (g)	NA
Moisture Content (%)	10.9	Moisture Content (%)	NA
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	214.56
Dry Weight of -3/4" Sample (g)	180.75	Weight of - #200 Material (g)	33.81
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	180.75
Dry Weight of +3/4" Sample (g)	0.00		
Total Dry Weight of Sample (g)	NA		

Boring No.:B-4Depth (ft):8.5-10.5Sample No.:SS-4Soil Color:Brown

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Perce	nt Accumulated
Size	Opening	Retained	Retained	Percent	Fine	r Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.0	00 100.00
6"	150	0.00	0.00	0.00	100.0	00 100.00
3"	75	0.00	0.00	0.00	100.0	00 100.00
2"	50	0.00	0.00	0.00	100.0	00 100.00
1 1/2"	37.5	0.00	0.00	0.00	100.0	00 100.00
1"	25.0	0.00	0.00	0.00	100.0	00 100.00
3/4"	19.0	0.00	0.00	0.00	100.0	00 100.00
1/2"	12.5	0.00	0.00	0.00	100.0	00 100.00
3/8"	9.50	0.00	0.00	0.00	100.0	00 100.00
#4	4.75	0.55	0.26	0.26	99.7	4 99.74
#10	2.00	23.76	11.07	11.33	88.6	7 88.67
#20	0.85	33.12	15.44	26.77	73.2	3 73.23
#40	0.425	47.20	22.00	48.76	51.2	4 51.24
#60	0.250	49.59	23.11	71.88	28.1	2 28.12
#140	0.106	21.40	9.97	81.85	18.1	5 18.15
#200	0.075	5.13	2.39	84.24	15.7	6 15.76
Pan	-	33.81	15.76	100.00	-	-

	Tested By	HL	Date	10/29/15	Checked By	KC	Date	11/2/15
page 3 of 4		DCN: CT-S3A DATE:	3/18/13 REVISION	: 11				

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference:	AECOM Sippo Crk, Dam Reservoir 60439145	Boring No.: Depth (ft):	B-4 8 5-10 5
Project No.:	2015-550-001	Sample No.:	SS-4
Lab ID:	2015-550-001-012	Soil Color:	Brown

Elapsed	R	Temp.	Composite	R	N	К	Diameter	N'
Time	Measured		Correction	Corrected		Factor		
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	19.0	23.1	5.97	13.0	75.7	0.01296	0.0333	11.9
5	17.0	23.1	5.97	11.0	64.1	0.01296	0.0213	10.1
15	14.5	23.1	5.97	8.5	49.6	0.01296	0.0125	7.8
30	13.0	23.1	5.97	7.0	40.9	0.01296	0.0089	6.4
60	12.5	22.4	6.22	6.3	36.5	0.01307	0.0064	5.8
250	11.0	22.6	6.15	4.9	28.2	0.01303	0.0031	4.4
1440	9.0	22.6	6.15	2.9	16.6	0.01303	0.0013	2.6

Soil Specimen Data		Other Corrections		
Tare No.	947			
Weight of Tare & Dry Material (g)	122.25	a - Factor	0.99	
Weight of Tare (g)	100.21			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	15.76	
Weight of Dry Material (g)	17.0			
		Specific Gravity	2.7	Assumed
		· · ·		

Note: Hydrometer test is performed on - # 200 sieve material.

	Tested By	то	Date	10/29/15	Checked By	KC	Date	11/2/15	
page 4 of 4		DCN: CT-S3A	DATE: 3/18/13 REVISION:	11			S:Excel\Excel QA\Spre	eadsheets\SieveH	lyd.xls

ATTERBERG LIMIT

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID:

AECOM Sippo Crk. Dam Reservoir 60439145 2015-550-001 2015-550-001-012

Boring No.: Depth (ft): Sample No.: Visual:

B-4 8.5-10.5 SS-4 **BROWN SILT** (MInus No. 40 sieve material, Airdried)

NON - PLASTIC MATERIAL

Tested By RAL Date 10/23/15 Checked By CLK 10/26/15 Date

DCN: CT-S4C DATE: 3/20/13 REVISION : 3

S:\Excel\Excel QA\Spreadsheets\Limit NP.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-013

Boring No.: B-2, B-3 Depth (ft): Composite Sample No.: SS-1&2, SS-1 Soil Color: Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client:AECOMClient Reference:Sippo Crk. Dam Reservoir 60439145Project No.:2015-550-001Lab ID:2015-550-001-013

Boring No.: B-2, B-3 Depth (ft): Composite Sample No.: SS-1&2, SS-1 Soil Color: Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample	
Tare No.:	1422	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	755.01	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	755.01	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	144.85	Weight of Tare (g):	NA
Weight of Water (g):	0.00	Weight of Water (g):	NA
Weight of Dry Sample (g):	610.16	Weight of Dry Sample (g):	NA
Moisture Content (%):	0.0	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	610.16
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g):	NA 339.5	Weight of the Dry Sample (g): Weight of - #200 Material (g):	610.16 134.16
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g):	NA 339.5 NA	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	610.16 134.16 476.00
Wet Weight of -3/4" Sample (g): Dry Weight of - 3/4" Sample (g): Wet Weight of +3/4" Sample (g): Dry Weight of + 3/4" Sample (g):	NA 339.5 NA 136.53	Weight of the Dry Sample (g): Weight of - #200 Material (g): Weight of + #200 Material (g):	610.16 134.16 476.00

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	35.35	5.79	5.79	94.21	94.21
3/4"	19.0	101.18	16.58	22.38	77.62	77.62
1/2"	12.50	17.99	2.95	25.32	74.68	74.68
3/8"	9.50	11.38	1.87	27.19	72.81	72.81
#4	4.75	36.22	5.94	33.13	66.87	66.87
#10	2.00	86.57	14.19	47.31	52.69	52.69
#20	0.850	64.02	10.49	57.81	42.19	42.19
#40	0.425	46.10	7.56	65.36	34.64	34.64
#60	0.250	31.34	5.14	70.50	29.50	29.50
#140	0.106	33.83	5.54	76.04	23.96	23.96
#200	0.075	12.02	1.97	78.01	21.99	21.99
Pan	-	134.16	21.99	100.00	-	-

	Tested By	HL	Date	10/27/15	Checked By	KC	Date	10/27/15
page 2 of 2		DCN: CT-S3C D	ATE 3/20/13 REV	/ISION: 3				

ATTERBERG LIMITS

ASTM D 4318-10

Client: Client Reference: Project No.: Lab ID: Note: The USCS symbols sieve material. See the	AECOM Sippo Crk. 1 2015-550-0 2015-550-0 ool used with "Sieve and F	Dam Reserv 01 01-013 <i>this test refe</i> lydrometer A	oir 60439 ers only to Analysis" g	145 S the minus N graph page fo	Boring No.: Depth (ft): Sample No.: coil Description: <i>Io. 40</i> or the complete	B-2, B-3 Composite SS-1&2, SS-1 BROWN LEAN CLAY (Minus No. 40 sieve material, Airdried) <i>material description</i> .
Liquid Limit Test Tare Number: Wt. of Tare & Wet Sar Wt. of Tare & Dry San Weight of Tare (g): Weight of Water (g): Weight of Dry Sample Moisture Content (% Number of Blows:	nple (g): nple (g): (g):):	1 245 37.75 33.38 17.30 4.4 16.1 27.2 15	2 1253 41.73 37.33 20.98 4.4 16.4 26.9 28	3 157 37.69 33.59 17.49 4.1 16.1 25.5 35		M U L T I P O I N T
Plastic Limit Test Tare Number: Wt. of Tare & Wet Sar Wt. of Tare & Dry San Weight of Tare (g): Weight of Water (g): Weight of Dry Sample Moisture Content (% Note: The acceptable	nple (g): ple (g): (g): (g):): range of the	1 335 25.94 25.12 19.71 0.8 5.4 15.2 two Moistur	2 1274 29.63 28.77 23.28 0.9 5.5 15.7 e contents	-0.5		Test ResultsLiquid Limit (%):26Plastic Limit (%):15Plasticity Index (%):11USCS Symbol:CL
28 27 26 25 24 23 22 21 20 1	Flow Curve		100	60 50 40 30 20 10 0 CL- ML	PI CL CL 20 40 Liqu	asticity Chart
Tested By RAL page 1 of 1 DCN: CTS4B. RE	Date	10/23/15	Chec	ked By	CLK	Date 10/26/15

S:\Excel\Excel QA\Spreadsheets\Limit 3Pt.xls

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999 • www.geotechnics.net

Elists Design Maps Detailed Report

ASCE 7-10 Standard (40.80403°N, 81.5076°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_S) and 1.3 (to obtain S₁). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^[1]	S _S = 0.128 g

From Figure 22-2^[2]

 $S_1 = 0.055 g$

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Site Class	\overline{v}_{S}	N or N _{ch}	- s _u	
A. Hard Rock	>5,000 ft/s	N/A	N/A	
B. Rock	2,500 to 5,000 ft/s	N/A	N/A	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf	
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf	
E. Soft clay soil	<600 ft/s	<15	<1,000 psf	
	Any profile with more that characteristics: • Plasticity index PI • Moisture content • Undrained shear s	an 10 ft of soil r > 20, $w \ge 40\%,$ and strength $s_{\rm u} <$	having the I 500 psf	
F. Soils requiring site response	See	Section 20.3.	1	

F. Soils requiring site response analysis in accordance with Section

21.1

For SI: $1 \text{ ft/s} = 0.3048 \text{ m/s} 1 \text{ lb/ft}^2 = 0.0479 \text{ kN/m}^2$

Section 11.4.3 — Site Coefficients and Risk–Targeted Maximum Considered Earthquake (<u>MCER</u>) Spectral Response Acceleration Parameters

Site Class	Mapped MCE $_{\rm R}$ Spectral Response Acceleration Parameter at Short Period							
	S _S ≤ 0.25	S _S = 0.50	S _S = 0.75	S _S = 1.00	S _S ≥ 1.25			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
Е	2.5	1.7	1.2	0.9	0.9			
F	See Section 11.4.7 of ASCE 7							

Table 11.4–1: Site Coefficient Fa

Note: Use straight-line interpolation for intermediate values of SS

For Site Class = D and $S_S = 0.128 \text{ g}$, $F_a = 1.600$

Table 11.4–2: Site Coefficient F_V

Site Class	Mapped MCE $_{R}$ Spectral Response Acceleration Parameter at 1–s Period					
	$S_{1} \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	S ₁ ≥ 0.50	
A	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.7	1.6	1.5	1.4	1.3	
D	2.4	2.0	1.8	1.6	1.5	
Е	3.5	3.2	2.8	2.4	2.4	
F	See Section 11.4.7 of ASCE 7					

Note: Use straight–line interpolation for intermediate values of S_1

For Site Class = D and $S_1 = 0.055$ g, $F_V = 2.400$

Design Maps Detailed Report

Equation (11.4-1):	$S_{MS} = F_a S_S = 1.600 \times 0.128 = 0.204 g$
Equation (11.4-2):	$S_{M1} = F_V S_1 = 2.400 \times 0.055 = 0.132 g$
Section 11.4.4 — Design Spectral Accelera	ation Parameters
Equation (11.4–3):	$S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 0.204 = 0.136 g$
Equation (11.4-4):	S _{D1} = ⅔ S _{M1} = ⅔ x 0.132 = 0.088 g

Section 11.4.5 — Design Response Spectrum

From <u>Figure 22-12</u> [3]

 $T_L = 12$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE_R) Response Spectrum

The MCE_R Response Spectrum is determined by multiplying the design response spectrum

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From <u>Figure 22-7</u> [4] PC	GA = 0.063
--------------------------------	------------

Equation (11.8-1):

 $PGA_M = F_{PGA}PGA = 1.600 \times 0.063 = 0.101 g$

Table 11.8–1: Site Coefficient F _{PGA}						
Site Class	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA					
	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50	
А	0.8	0.8	0.8	0.8	0.8	
В	1.0	1.0	1.0	1.0	1.0	
С	1.2	1.2	1.1	1.0	1.0	
D	1.6	1.4	1.2	1.1	1.0	
Е	2.5	1.7	1.2	0.9	0.9	
F	See Section 11.4.7 of ASCE 7					

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.063 g, FPGA = 1.600

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From <u>Figure 22-17</u> ^[5]	$C_{RS} = 0.898$
From <u>Figure 22-18</u> ^[6]	$C_{R1} = 0.919$

Section 11.6 — Seismic Design Category

Parameter				
VALUE OF S _{DS}		RISK CATEGORY		
	I or II	III	IV	
S _{DS} < 0.167g	А	А	А	
0.167g ≤ S _{DS} < 0.33g	В	В	С	
0.33g ≤ S _{DS} < 0.50g	С	С	D	
0.50g ≤ S _{DS}	D	D	D	

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration

For Risk Category = I and S_{DS} = 0.136 g, Seismic Design Category = A

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

	RISK CATEGORY			
VALUE OF SDI	I or II	III	IV	
S _{D1} < 0.067g	А	А	А	
0.067g ≤ S _{D1} < 0.133g	В	В	С	
0.133g ≤ S _{D1} < 0.20g	С	С	D	
0.20g ≤ S _{D1}	D	D	D	

For Risk Category = I and S_{D1} = 0.088 g, Seismic Design Category = B

Note: When S₁ is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = B

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

- 1. *Figure 22-1*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
- 2. Figure 22-2: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
- 3. Figure 22-12: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- 4. Figure 22-7: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. Figure 22-17: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. Figure 22-18: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

6/1/2017 Design Maps Summary Report ≊USGS

User-Specified Input Report Title Sippo Creek Thu June 1, 2017 16:35:20 UTC Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available in 2008) Site Coordinates 40.80403°N, 81.5076°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III

USGS-Provided Output

s _s =	0.128 g	s _{MS} =	0.204 g	s _{DS} =	0.136 g
s ₁ =	0.055 g	s _{M1} =	0.132 g	s _{D1} =	0.088 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_M, T_L , C_{RS} , and C_{R1} values, please <u>view the detailed report</u>.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: A-A' (EXISTING CONDITIONS) ANALYSIS: 1_Static, Steady State, Downstream

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 29 ° Name: Native Granular Soils Model: Mohr-Coulomb Unit Weight: 117 pcf Cohesion': 0 psf Phi': 30 ° PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: A-A' (EXISTING CONDITIONS) ANALYSIS: 2_Static, Steady State, Upstream

Name: Fill Materials Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 29 ° Name: Native Granular Soil Model: Mohr-Coulomb Unit Weight: 117 pcf Cohesion': 0 psf Phi': 30 °

PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: A-A' (EXISTING CONDITIONS) ANALYSIS: 3_Seismic (Pseudostatic) Condition, Downstream

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 29 ° Name: Native Granular Soi Model: Mohr-Coulomb Unit Weight: 117 pcf Cohesion': 0 psf Phi': 30 ° PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: A-A' (EXISTING CONDITIONS) ANALYSIS: 4_Seismic (Pseudostatic) Condition, Upstream

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 29 ° Name: Native Granular Soils Model: Mohr-Coulomb Unit Weight: 117 pcf Cohesion': 0 psf Phi': 30 ° PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: B-B' (EXISTING CONDITIONS) ANALYSIS: 1_Static, Steady State, Downstream

PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: B-B' (EXISTING CONDITIONS) ANALYSIS: 2_Static, Steady State, Upstream

PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: B-B' (EXISTING CONDITIONS) ANALYSIS: 3_Seismic (Pseudostatic) Condition, Downstream

PROJECT: SIPPO CREEK RESERVIOR CLIENT: CITY OF MASSILLON PROJECT LOCATION: MASSILLON, OHIO AECOM PROJECT NO. : 60439145 CROSS SECTION: B-B' (EXISTING CONDITIONS) ANALYSIS: 4_Seismic (Pseudostatic) Condition, Upstream

Appendix B Hydrologic and Hydraulic (H&H) Engineering

- B.1 HydroCAD Modeling
- B.2 HEC-RAS Modeling
- B.3 Grouted Riprap Outlet Channel Design
- B.4 TRM Design

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Sippo Creek	Main	5575.178	800 (~10-year)	800.00	991.80	998.92		998.93	0.000064	0.99	806.04	203.38	0.09
Sippo Creek	Main	5575.178	1100 (~25-year)	1100.00	991.80	999.61		999.63	0.000076	1.15	952.92	217.95	0.10
Sippo Creek	Main	5575.178	1500 (~50-year)	1500.00	991.80	1000.40		1000.43	0.000086	1.33	1129.82	230.07	0.11
Sippo Creek	Main	5575.178	1980 (~100-year)	1980.00	991.80	1001.21		1001.24	0.000096	1.50	1320.04	241.84	0.11
Sippo Creek	Main	5456.75	800 (~10-year)	800.00	986.80	998.92	988.56	998.93	0.000007	0.52	1531.74	183.85	0.03
Sippo Creek	Main	5456.75	1100 (~25-year)	1100.00	986.80	999.62	988.92	999.63	0.000010	0.66	1662.30	190.05	0.04
Sippo Creek	Main	5456.75	1500 (~50-year)	1500.00	986.80	1000.41	989.35	1000.42	0.000014	0.83	1814.93	196.45	0.05
Sippo Creek	Main	5456.75	1980 (~100-year)	1980.00	986.80	1001.22	989.79	1001.23	0.000019	1.01	1976.21	203.27	0.06
Sippo Creek	Main	5456.65		Inl Struct									
Sippo Creek	Main	5431.914	800 (~10-year)	800.00	995.60	997.84	997.61	998.66	0.008154	7.25	110.40	49.36	0.85
Sippo Creek	Main	5431.914	1100 (~25-year)	1100.00	995.60	998.33	998.09	999.37	0.008223	8.19	134.27	49.49	0.88
Sippo Creek	Main	5431.914	1500 (~50-year)	1500.00	995.60	999.22		1000.24	0.005/42	8.21	190.48	/3.0/	0.76
Sippo Creek	Main	5431.914	1980 (~100-year)	1980.00	995.60	999.99		1001.05	0.004740	8.49	250.34	82.33	0.72
0		5 400 00t	000 (10	000.00	005.00	007.00	007.01	000.00	0.011071	0.00		40.05	1.00
Sippo Creek	Main	5430.63	800 (~10-year)	800.00	995.60	997.62	997.61	998.63	0.011374	8.03	99.60	49.35	1.00
Sippo Creek	Main	5430.63	1100 (~25-year)	1500.00	995.60	998.10	998.09	1000.04	0.010893	8.94	123.01	49.42	0.77
Sippo Creek	Main	5430.63	1500 (~50-year)	1000.00	995.60	999.20	998.82	1000.24	0.005809	8.24	190.20	/5.1/	0.77
Sippo Creek	IMan	5430.63	1960 (~100-year)	1960.00	995.60	999.90	999.52	1001.03	0.004697	0.40	204.70	90.03	0.71
Sinna Creek	Main	5420 336	800 (~10-year)	800.00	995 60	997.61	997.61	008 63	0.005151	8.08	10 00	10.35	1.01
Sippo Creek	Main	5429 336	1100 (~25-year)	1100.00	995.60	997.01	998.09	990.00	0.003131	8.98	122.48	49.35	1.01
Sippo Creek	Main	5429 336	1500 (~50-year)	1500.00	995.60	998.76	998.76	1000 19	0.004312	9.61	158.68	68 84	0.95
Sippo Creek	Main	5429 336	1980 (~100-year)	1980.00	995.60	999.72	999 72	1000.19	0.004133	9.26	249.41	136.69	0.00
	- Initiani	0120.000		1000.00	000.00	000.72	000.72	1000.00	0.002700	0.20	210.11	100.00	0.01
Sippo Creek	Main	5423.245	800 (~10-year)	800.00	987.14	987.82	989.19	997.66	0.208964	25.16	31.79	48.99	5.51
Sippo Creek	Main	5423.245	1100 (~25-year)	1100.00	987.14	988.04	989.67	998.35	0.149572	25.75	42.71	49.14	4.87
Sippo Creek	Main	5423.245	1500 (~50-year)	1500.00	987.14	988.33	990.23	999.18	0.109515	26.42	56.77	49.34	4.34
Sippo Creek	Main	5423.245	1980 (~100-year)	1980.00	987.14	997.22	990.83	997.41	0.000118	3.58	676.13	153.10	0.20
Sippo Creek	Main	5414.84	800 (~10-year)	800.00	987.20	988.00	989.28	995.59	0.136048	22.10	36.19	48.80	4.52
Sippo Creek	Main	5414.84	1100 (~25-year)	1100.00	987.20	988.22	989.76	996.75	0.109404	23.43	46.94	48.86	4.22
Sippo Creek	Main	5414.84	1500 (~50-year)	1500.00	987.20	988.50	990.33	997.94	0.086853	24.64	60.87	48.95	3.90
Sippo Creek	Main	5414.84	1980 (~100-year)	1980.00	987.20	997.27		997.39	0.000091	3.00	914.95	199.16	0.17
Sippo Creek	Main	5404.859	800 (~10-year)	800.00	987.33	988.23	989.41	993.97	0.086019	19.22	41.63	48.90	3.67
Sippo Creek	Main	5404.859	1100 (~25-year)	1100.00	987.33	988.45	989.89	995.35	0.077462	21.08	52.18	48.96	3.60
Sippo Creek	Main	5404.859	1500 (~50-year)	1500.00	987.33	988.73	990.46	996.76	0.066894	22.73	65.98	49.05	3.46
Sippo Creek	Main	5404.859	1980 (~100-year)	1980.00	987.33	997.31	991.10	997.37	0.000052	2.26	1290.10	283.42	0.13
Sippo Creek	Main	5389.75*	800 (~10-year)	800.00	986.68	990.28	988.82	990.53	0.001974	4.23	212.58	75.18	0.40
Sippo Creek	Main	5389.75*	1100 (~25-year)	1100.00	986.68	987.98	989.25	993.29	0.156805	18.62	60.92	55.31	2.98
Sippo Creek	Main	5389.75*	1500 (~50-year)	1500.00	986.68	992.57	989.77	992.83	0.001100	4.42	421.47	109.82	0.32

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Sippo Creek	Main	5389.75*	1980 (~100-year)	1980.00	986.68	997.29		997.36	0.000169	2.57	1270.89	260.62	0.14
Sippo Creek	Main	5374.649	800 (~10-year)	800.00	986.04	990.31		990.49	0.001120	3.57	253.61	74.26	0.31
Sippo Creek	Main	5374.649	1100 (~25-year)	1100.00	986.04	991.03	988.66	991.27	0.001192	4.09	308.70	78.52	0.32
Sippo Creek	Main	5374.649	1500 (~50-year)	1500.00	986.04	992.59		992.81	0.000828	4.09	445.91	98.35	0.28
Sippo Creek	Main	5374.649	1980 (~100-year)	1980.00	986.04	997.29		997.36	0.000153	2.53	1253.73	241.73	0.13
Sippo Creek	Main	5345.135	800 (~10-year)	800.00	985.77	990.15		990.44	0.001656	4.49	201.93	62.95	0.38
Sippo Creek	Main	5345.135	1100 (~25-year)	1100.00	985.77	990.82		991.21	0.001848	5.23	246.80	71.10	0.41
Sippo Creek	Main	5345.135	1500 (~50-year)	1500.00	985.77	992.43		992.77	0.001185	5.05	384.98	100.68	0.35
Sippo Creek	Main	5345.135	1980 (~100-year)	1980.00	985.77	997.26		997.36	0.000189	2.92	1125.14	207.74	0.15
Sippo Creek	Main	5299.836	800 (~10-year)	800.00	985.53	989.74	988.64	990.30	0.005277	5.97	134.05	41.20	0.58
Sippo Creek	Main	5299.836	1100 (~25-year)	1100.00	985.53	990.25	989.27	991.03	0.006550	7.08	155.38	42.08	0.65
Sippo Creek	Main	5299.836	1500 (~50-year)	1500.00	985.53	992.03	989.93	992.66	0.003766	6.39	235.06	46.05	0.50
Sippo Creek	Main	5299.836	1980 (~100-year)	1980.00	985.53	997.18	990.72	997.34	0.000440	3.47	817.58	184.18	0.19
Sippo Creek	Main	5298.736		Bridge									
Sippo Creek	Main	5283.132	800 (~10-year)	800.00	985.28	989.67		990.21	0.004099	5.93	134.91	36.71	0.54
Sippo Creek	Main	5283.132	1100 (~25-year)	1100.00	985.28	990.11		990.93	0.005414	7.29	151.08	36.82	0.63
Sippo Creek	Main	5283.132	1500 (~50-year)	1500.00	985.28	991.84		992.60	0.003125	6.99	215.31	37.38	0.51
Sippo Creek	Main	5283.132	1980 (~100-year)	1980.00	985.28	997.11		997.28	0.000392	3.80	825.32	236.00	0.20
Sippo Creek	Main	5244.73	800 (~10-year)	800.00	985.83	988.91	988.91	989.90	0.013479	7.64	108.13	64.19	0.85
Sippo Creek	Main	5244.73	1100 (~25-year)	1100.00	985.83	989.37	989.37	990.59	0.012406	8.23	137.83	66.49	0.84
Sippo Creek	Main	5244.73	1500 (~50-year)	1500.00	985.83	992.10		992.38	0.001274	4.13	414.58	137.97	0.30
Sippo Creek	Main	5244.73	1980 (~100-year)	1980.00	985.83	997.19		997.24	0.000078	1.57	1423.50	243.29	0.08

HEC-RAS Plan: Prop 100yr Locations: User Defined (Continued)

Summary for Pond 1P: Sippo Creek Reservoir - Proposed Spillway

Inflow Area	= !	9,459.200 ac,	19.70% Impe	ervious,	Inflow	Depth >	0.9	6"	for	10 y	/ear -	NOA	A even	t
Inflow =	=	817.90 cfs @	13.24 hrs,	Volume	=	757.900	af,	Incl.	10.0)0 ci	fs Bas	se Flo	W	
Outflow =	=	800.10 cfs @	13.32 hrs,	Volume	=	756.591	af,	Atte	n= 2'	%,	Lag=	5.2 m	nin	
Primary =	=	800.10 cfs @	13.32 hrs,	Volume	=	756.591	af							
Secondary =	=	0.00 cfs @	0.00 hrs,	Volume	=	0.000	af							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 995.76' Surf.Area= 3.584 ac Storage= 26.623 af Peak Elev= 998.48' @ 13.32 hrs Surf.Area= 5.175 ac Storage= 38.463 af (11.840 af above start) Flood Elev= 1,005.00' Surf.Area= 12.657 ac Storage= 88.432 af (61.809 af above start)

Plug-Flow detention time= 90.1 min calculated for 729.811 af (96% of inflow) Center-of-Mass det. time= 9.8 min (1,371.3 - 1,361.5)

Volume	Invert	Avail.Storag	e Storage Desc	ription			
#1	985.00'	1,289.545	af Custom Stag	e Data (Irregular)) Listed below ((Recalc)	
	o (i	- ·					
Elevatio	n Surf.Are	a Perim	Inc.Store	Cum.Store	Wet.Area		
(feet	t) (acres	s) (feet)	(acre-feet)	(acre-feet)	(acres)		
985.0	0 0.50	0 500.0	0.000	0.000	0.500		
990.0	0 3.00	0 1,000.0	7.875	7.875	1.873		
995.6	0 3.50	0 1,750.0	18.182	26.057	5.645		
998.0	0 4.87	0 2,500.0	9.999	36.055	11.469		
1,000.0	0 6.20	4 3,251.0	11.047	47.103	19.360		
1,002.0	0 7.24	3 5,147.0	13.434	60.536	48.449		
1,004.0	0 9.61	0 10,274.0	16.797	77.333	192.887		
1,006.0	0 16.12	4 11,202.9	25.455	102.788	229.335		
1,008.0	0 21.57	7 15,736.9	37.569	140.357	452.476		
1,010.0	0 29.67	4 20,301.4	51.036	191.393	752.988		
1,012.0	0 39.53	9 22,845.5	68.977	260.371	953.524		
1,014.0	0 68.66	9 34,370.5	106.876	367.247	2,158.174		
1,025.0	0 100.00	0 50,000.0	922.298	1,289.545	4,567.204		
Device	Routing	Invert	Outlet Devices				
#1	Primary	995.60'	Primary Spillway	, Cv= 2.62 (C= 3.2	28)		
			Head (feet) 0.00	2.99 3.00			
		,	Width (feet) 50.0	0 50.00 54.00			
#2	Secondary	998.60'	Dam, Cv= 2.62 (C	= 3.28)			
	-		Head (feet) 0.00	2.00			
		,	Width (feet) 64.0	0 88.00			

Primary OutFlow Max=800.02 cfs @ 13.32 hrs HW=998.48' TW=991.03' (Dynamic Tailwater) -1=Primary Spillway (Weir Controls 800.02 cfs @ 5.56 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=995.76' TW=987.88' (Dynamic Tailwater) -2=Dam (Controls 0.00 cfs)

Pond 1P: Sippo Creek Reservoir - Proposed Spillway

Summary for Pond 1P: Sippo Creek Reservoir - Proposed Spillway

Inflow Area =	9,459.200 ac,	19.70% Impervious,	Inflow Depth > 2.	27" for 100 year-NOAA event
Inflow =	1,973.48 cfs @	14.67 hrs, Volume	= 1,791.834 af,	Incl. 10.00 cfs Base Flow
Outflow =	1,971.55 cfs @	14.75 hrs, Volume	= 1,788.430 af,	Atten= 0%, Lag= 5.2 min
Primary =	1,346.45 cfs @	14.72 hrs, Volume	= 1,594.197 af	
Secondary =	625.17 cfs @	14.77 hrs, Volume	= 194.233 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Starting Elev= 995.76' Surf.Area= 3.584 ac Storage= 26.623 af Peak Elev= 1,000.50' @ 14.77 hrs Surf.Area= 6.454 ac Storage= 50.243 af (23.620 af above start) Flood Elev= 1,005.00' Surf.Area= 12.657 ac Storage= 88.432 af (61.809 af above start)

Plug-Flow detention time= 44.8 min calculated for 1,761.803 af (98% of inflow) Center-of-Mass det. time= 7.7 min (1,346.9 - 1,339.1)

Volume	Invert	Avail.Storag	e Storage Desc	ription			
#1	985.00'	1,289.545 a	af Custom Stag	e Data (Irregular)	Listed below (Recalc)	
Elevation	n Surf.Are	a Perim	Inc.Store	Cum.Store	Wet.Area		
			(acre-reer)		(acres)		
985.00	0 0.50	0 500.0	0.000	0.000	0.500		
990.00	0 3.00	0 1,000.0	7.875	7.875	1.873		
995.60	0 3.50	0 1,750.0	18.182	26.057	5.645		
998.00	0 4.87	0 2,500.0	9.999	36.055	11.469		
1,000.00	0 6.20 [,]	4 3,251.0	11.047	47.103	19.360		
1,002.00	0 7.24	3 5,147.0	13.434	60.536	48.449		
1,004.00	9.61	0 10,274.0	16.797	77.333	192.887		
1,006.00	0 16.12	4 11,202.9	25.455	102.788	229.335		
1,008.00	0 21.57	7 15,736.9	37.569	140.357	452.476		
1,010.00	0 29.67	4 20,301.4	51.036	191.393	752.988		
1,012.00	0 39.53	9 22,845.5	68.977	260.371	953.524		
1,014.00	0 68.66	9 34,370.5	106.876	367.247	2,158.174		
1,025.00	0 100.00	0 50,000.0	922.298	1,289.545	4,567.204		
	De l'es	1					
Device	Routing	Invert	Outlet Devices				
#1	Primary	995.60'	Primary Spillway	, Cv= 2.62 (C= 3.2	28)		
			Head (feet) 0.00	2.99 3.00			
		,	Width (feet) 50.0	0 50.00 54.00			
#2	Secondary	998.60'	Dam, Cv= 2.62 (C	= 3.28)			
			Head (feet) 0.00	2.00			
		,	Width (feet) 64.0	0 88.00			
			· •				

Primary OutFlow Max=1,346.41 cfs @ 14.72 hrs HW=1,000.50' TW=995.68' (Dynamic Tailwater) **1=Primary Spillway** (Orifice Controls 1,346.41 cfs @ 8.97 fps)

Secondary OutFlow Max=625.17 cfs @ 14.77 hrs HW=1,000.50' TW=995.71' (Dynamic Tailwater) **2=Dam** (Weir Controls 625.17 cfs @ 4.37 fps)

Pond 1P: Sippo Creek Reservoir - Proposed Spillway

	Project Number:	604391	45	
$\Delta = COM$	Calculated By:	CDM	Date	5/30/2017
	Checked By:	MMS	Date	6/1/2017

5.284909

24 in

1500 cfs

60 ft 25 cfs/ft

Grouted Riprap Outlet Channel Design

Reference: Urban Drainage and Flood Control District Criteria Manual, 2008. Volume 2, Structures, Storage and Recreation, Chapter 9: Hydraulic Structures.

Given	
Basin Outlet Velocity, V	
Maximum (HEC-RAS)	23.8 ft/s
Channel Slope	0.001 ft/ft
Specific Gravity of rock	2.65 lbs/ft ³

$$R_p = \frac{V_c S^{0.17}}{(S_s - 1)^{0.66}}$$

in which: S = longitudinal slope along direction of flow in ft/ft

 S_s = Specific gravity of the rock. Assume 2.55 unless the quarry certifies higher specific gravity.

Table HS-5—Boulder Sizes for Various Rock Sizing Parameters

	Ungrouted	Boulders	Grouted Boulders *		
Rock Sizing Parameter, R _p	Minimum Dimensions of Boulder, <i>D_r</i>	Boulder Classification	Minimum Dimensions of Boulder, <i>D_r</i>	Boulder Classification	
Less than 4.50	18 inches	B18	18 inches	B18	
4.50 to 4.99	24 inches	B24	18 inches	B18	
5.00 to 5.59	30 inches	B30	24 inches	B24	
5.60 to 6.39	36 inches	B36	30 inches	B30	
6.40 to 6.99	42 inches	B42	36 inches	B36	
7.00 to 7.49	48 inches	B48	42 inches	B42	
7.50 to 8.00	n/a	n/a	48 inches	B48	

* Grouted to no less than $\frac{1}{2}$ the height (+1"/- 0"), no more than $\frac{1}{3}$ (+0"/- 1") of boulder height.

MAXIMUM UNIT DISCHARGE	ALLOWABL FOR EACH	LENGTH OF DOWNSTREAM			
q (cfs/ft	м	н	νн	(Ft) B	
15	0 to 7:1	7:1 to 4:1	N/A	15	
20	0 to 8:1	8:1 to 5:1	5:1 to 4:1	20	
25	0 to 10:1	10:1 to 6:1	6:1 to 4:1	20	
30	0 to 12:1	12:1 to 7:1	7:1 to 4.5:1	25	
35	0 to 13:1	13:1 to 8:1	8:1 to 6:1	25	
DR*	1.75'	2.6'	3.5'		
DR**	2.0'	3.0'	4.0'		
DRW	1.5 x DR	1.25 x DR	1.0 x DR		

* 50 ft plus 5 ft on each side

Channel Width*

Calculate Rp

Table HS-5 Grouted Boulders

Determine Unit Discharge

Rp

Dr

Q

q

Results	
Min. Grouted Rock size	24 in
Length of Downstream Apron	20 ft
Use ODOT Type A Riprap	24 in
Thickness	3 ft
Grout Height	18 in

AECOM

Velocity Calculation

Sippo Creek Reservoir Dam Overtopping Protection

Project:	Sippo Cree	k Reservoir Dam	
Project #:	13814498	Date:	05/31/17
Designed by:	MMS	Checked by:	SW

$$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [U.S.]$$
$$Q = VA = \left(\frac{1.00}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [SI]$$

Where:

Q = Flow Rate, (ft³/s) v = Velocity, (ft/s) A = Flow Area, (ft²) n = Manning's Roughness Coefficient R = Hydraulic Radius, (ft) S = Channel Slope, (ft/ft)

Results from HEC-RAS Qt=2400 cfs

Cross Section	Q L (cfs) Q R (cfs)		Area L (ft2)	Area R (ft2)	Wetted Perimeter L	Wetted Perimeter R	Hydraulic	Hydraulic
		Q K (CIS)			(ft)	(ft)	Radius L (ft)	Radius R (ft)
5456.75	384.05	201.71	77.1325	39.215	158.76	82.44	0.485843411	0.475679282
5456.65 IS								

Assume n = 0.025 Articulated Concrete Block

S = 0.4 ft/ft Proposed

Velocity	XS 5456.75
Left (fps)	23.29559463
Right (fps)	22.96954608

Conclusion:

Use Pyramat 75 with 18-inch anchors

Worksheet for Trapezoidal Channel - Partial Removal-Crest

Project Description		
Friction Method	Manning Formula	
Solve For	Channel Slope	
Input Data		
Roughness Coefficient	0.028	
Normal Depth	1.35	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	0.00	ft/ft (H:V)
Bottom Width	35.00	ft
Discharge	313.00	ft³/s
Results		
Channel Slope	0.01077	ft/ft
Flow Area	49.07	ft²
Wetted Perimeter	39.37	ft
Hydraulic Radius	1.25	ft
Top Width	37.70	ft
Critical Depth	1.34	ft
Critical Slope	0.01111	ft/ft
Velocity	6.38	ft/s
Velocity Head	0.63	ft
Specific Energy	1.98	ft
Froude Number	0.99	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.35	ft
Critical Depth	1.34	ft
Channel Slope	0.01077	ft/ft

Bentley Systems, Inc. Haestad Methods So Bratithe Gentoer Master V8i (SELECT series 1) [08.11.01.03]

5/31/2017 6:07:19 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for Trapezoidal Channel - Partial Removal-Crest

GVF Output Data

Critical Slope

0.01111 ft/ft

Rating Table for Trapezoidal Channel - Partial Removal-Crest

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	

Roughness Coefficient	0.028	
Channel Slope	0.01080	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	0.00	ft/ft (H:V)
Bottom Width	35.00	ft
Discharge	313.00	ft³/s

Channel Slope (ft/ft)	Normal Depth (ft)	Velocity (ft/s)	Flow Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)
0.01000	1.38	6.23	50.23	39.47	37.76
0.02000	1.12	7.74	40.45	38.62	37.24
0.03000	0.99	8.78	35.65	38.21	36.98
0.04000	0.91	9.60	32.61	37.94	36.82
0.05000	0.85	10.28	30.44	37.75	36.70
0.06000	0.80	10.88	28.78	37.60	36.61
0.07000	0.77	11.41	27.43	37.48	36.53
0.08000	0.74	11.89	26.33	37.38	36.47
0.09000	0.71	12.33	25.39	37.30	36.42
0.10000	0.69	12.73	24.58	37.23	36.38
0.11000	0.67	13.10	23.89	37.17	36.34
0.12000	0.65	13.46	23.25	37.11	36.30
0.13000	0.64	13.79	22.70	37.06	36.27
0.14000	0.62	14.11	22.19	37.02	36.25
0.15000	0.61	14.42	21.71	36.97	36.22
0.16000	0.60	14.70	21.29	36.94	36.20
0.17000	0.59	14.97	20.91	36.90	36.17
0.18000	0.58	15.24	20.54	36.87	36.15
0.19000	0.57	15.49	20.20	36.84	36.14
0.20000	0.56	15.75	19.88	36.81	36.12
0.21000	0.55	15.98	19.59	36.78	36.10
0.22000	0.54	16.21	19.31	36.76	36.09
0.23000	0.54	16.42	19.06	36.74	36.07

Bentley Systems, Inc. Haestad Methods SoBatinthe Gender Master V8i (SELECTseries 1) [08.11.01.03]

5/31/2017 6:13:06 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Rating Table for Trapezoidal Channel - Partial Removal-Crest

Input Data

Channel Slope (ft/ft)	Normal Depth (ft)	Velocity (ft/s)	Flow Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)
0.24000	0.53	16.64	18.81	36.71	36.06
0.25000	0.52	16.85	18.58	36.69	36.05
0.26000	0.52	17.05	18.36	36.67	36.03
0.27000	0.51	17.25	18.15	36.65	36.02
0.28000	0.51	17.45	17.94	36.63	36.01
0.29000	0.50	17.63	17.75	36.62	36.00
0.30000	0.49	17.82	17.56	36.60	35.99
0.31000	0.49	17.99	17.40	36.59	35.98
0.32000	0.49	18.17	17.23	36.57	35.97
0.33000	0.48	18.34	17.07	36.56	35.96
0.34000	0.48	18.51	16.91	36.54	35.95
0.35000	0.47	18.67	16.76	36.53	35.95
0.36000	0.47	18.83	16.62	36.52	35.94
0.37000	0.46	18.99	16.48	36.50	35.93
0.38000	0.46	19.14	16.35	36.49	35.92
0.39000	0.46	19.31	16.21	36.48	35.91
0.40000	0.45	19.46	16.09	36.47	35.91
0.41000	0.45	19.60	15.97	36.46	35.90
0.42000	0.45	19.75	15.85	36.45	35.89
0.43000	0.44	19.89	15.73	36.44	35.89
0.44000	0.44	20.02	15.64	36.43	35.88
0.45000	0.44	20.16	15.53	36.42	35.88
0.46000	0.44	20.29	15.42	36.41	35.87
0.47000	0.43	20.43	15.32	36.40	35.86
0.48000	0.43	20.56	15.22	36.39	35.86
0.49000	0.43	20.69	15.13	36.38	35.85
0.50000	0.42	20.82	15.03	36.37	35.85

Cross Section for Trapezoidal Channel - Partial Removal-Crest

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.028	
Channel Slope	0.01080	ft/ft
Normal Depth	1.35	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	0.00	ft/ft (H:V)
Bottom Width	35.00	ft
Discharge	313.00	ft³/s

Cross Section Image

V:1 📐 H:1

Worksheet for Trapezoidal Channel - Partial Removal-Toe

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.028	
Channel Slope	0.50000	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	0.00	ft/ft (H:V)
Bottom Width	35.00	ft
Discharge	313.00	ft³/s
Results		
Normal Depth	0.42	ft
Flow Area	15.03	ft²
Wetted Perimeter	36.37	ft
Hydraulic Radius	0.41	ft
Top Width	35.85	ft
Critical Depth	1.34	ft
Critical Slope	0.01111	ft/ft
Velocity	20.82	ft/s
Velocity Head	6.74	ft
Specific Energy	7.16	ft
Froude Number	5.67	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.42	ft
Critical Depth	1.34	ft
Channel Slope	0.50000	ft/ft

Bentley Systems, Inc. Haestad Methods SoBetitte Gender Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

5/31/2017 6:02:16 PM

Worksheet for Trapezoidal Channel - Partial Removal-Toe

GVF Output Data

Critical Slope

0.01111 ft/ft

Rating Table for Trapezoidal Channel - Partial Removal-Toe

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
pat 2 ata			
Roughness Coefficient		0.028	
Channel Slope		0.20000	ft/ft
Left Side Slope		2.00	ft/ft

Channel Slope	0.20000	TUTL
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	0.00	ft/ft (H:V)
Bottom Width	35.00	ft
Discharge	313.00	ft³/s

Channel Slope (ft/ft)	Normal Depth (ft)	Velocity (ft/s)	Flow Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)
0.01000	1.38	6.23	50.23	39.47	37.76
0.02000	1.12	7.74	40.45	38.62	37.24
0.03000	0.99	8.78	35.65	38.21	36.98
0.04000	0.91	9.60	32.61	37.94	36.82
0.05000	0.85	10.28	30.44	37.75	36.70
0.06000	0.80	10.88	28.78	37.60	36.61
0.07000	0.77	11.41	27.43	37.48	36.53
0.08000	0.74	11.89	26.33	37.38	36.47
0.09000	0.71	12.33	25.39	37.30	36.42
0.10000	0.69	12.73	24.58	37.23	36.38
0.11000	0.67	13.10	23.89	37.17	36.34
0.12000	0.65	13.46	23.25	37.11	36.30
0.13000	0.64	13.79	22.70	37.06	36.27
0.14000	0.62	14.11	22.19	37.02	36.25
0.15000	0.61	14.42	21.71	36.97	36.22
0.16000	0.60	14.70	21.29	36.94	36.20
0.17000	0.59	14.97	20.91	36.90	36.17
0.18000	0.58	15.24	20.54	36.87	36.15
0.19000	0.57	15.49	20.20	36.84	36.14
0.20000	0.56	15.75	19.88	36.81	36.12
0.21000	0.55	15.98	19.59	36.78	36.10
0.22000	0.54	16.21	19.31	36.76	36.09
0.23000	0.54	16.42	19.06	36.74	36.07

Bentley Systems, Inc. Haestad Methods SoBatinthe Gender Master V8i (SELECTseries 1) [08.11.01.03]

5/31/2017 6:00:38 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Rating Table for Trapezoidal Channel - Partial Removal-Toe

Input Data

Channel Slope (ft/ft)	Normal Depth (ft)	Velocity (ft/s)	Flow Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)
0.24000	0.53	16.64	18.81	36.71	36.06
0.25000	0.52	16.85	18.58	36.69	36.05
0.26000	0.52	17.05	18.36	36.67	36.03
0.27000	0.51	17.25	18.15	36.65	36.02
0.28000	0.51	17.45	17.94	36.63	36.01
0.29000	0.50	17.63	17.75	36.62	36.00
0.30000	0.49	17.82	17.56	36.60	35.99
0.31000	0.49	17.99	17.40	36.59	35.98
0.32000	0.49	18.17	17.23	36.57	35.97
0.33000	0.48	18.34	17.07	36.56	35.96
0.34000	0.48	18.51	16.91	36.54	35.95
0.35000	0.47	18.67	16.76	36.53	35.95
0.36000	0.47	18.83	16.62	36.52	35.94
0.37000	0.46	18.99	16.48	36.50	35.93
0.38000	0.46	19.14	16.35	36.49	35.92
0.39000	0.46	19.31	16.21	36.48	35.91
0.40000	0.45	19.46	16.09	36.47	35.91
0.41000	0.45	19.60	15.97	36.46	35.90
0.42000	0.45	19.75	15.85	36.45	35.89
0.43000	0.44	19.89	15.73	36.44	35.89
0.44000	0.44	20.02	15.64	36.43	35.88
0.45000	0.44	20.16	15.53	36.42	35.88
0.46000	0.44	20.29	15.42	36.41	35.87
0.47000	0.43	20.43	15.32	36.40	35.86
0.48000	0.43	20.56	15.22	36.39	35.86
0.49000	0.43	20.69	15.13	36.38	35.85
0.50000	0.42	20.82	15.03	36.37	35.85

Cross Section for Trapezoidal Channel - Partial Removal-Toe

Project Description

Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.0	28
Channel Slope	0.500	000 ft/ft
Normal Depth	0	42 ft
Left Side Slope	2	.00 ft/ft (H:V)

2.00 ft/ft (H:V) 0.00 ft/ft (H:V) 35.00 ft

313.00 ft³/s

Cross Section Image

Right Side Slope Bottom Width

Discharge

V:1 📐 H:1

Appendix C Structural Engineering

C.1 Structural Analysis

AECOM 564 White Pond Drive Akron, OH 44320-1100 330.836.9111 tel 330.836.9115 fax

May 31, 2017

Subject: Sippo Dam Massillon, OH Job No. 60439145 Structural Analysis Memorandum

Dear Mr. Walker:

We have conducted a site visit to Sippo Dam in Massillon, OH on May 3, 2017 to assess the current condition of the dam and to take field measurements. Per emergency order of ODNR, 3 courses of the dam were partially removed. It was proposed to lower the dam by 4 complete courses (one additional course and the remaining partial courses), reducing the height of the dam to 5 courses (8'-0"). Structural analysis of the proposed dam lowering was then conducted according to the Army Corps of Engineers Manuals and Regulations, particularly EM 1110-2-2200 "Gravity Dam Design" and ER 1110-2-1806 "Earthquake Design and Evaluation for Civil Works Projects." Numerous conservative assumptions were made due to the lack of existing plans and visual constraints.

Per EM 1110-2-2200, three load conditions were investigated: Condition No. 2, Condition No. 3, and Condition No. 6. Please note that Condition No. 5 (Unusual – Operating Basis Earthquake) was not considered because Condition No. 3 (Unusual Flood) controlled the Unusual load condition. Each load condition was checked for overturning, sliding, and bearing at each course. Additionally, each case was checked with uplift (A) and without uplift (B). For specific load case assumptions, please refer to the structural calculations. The results for each condition are listed below.

- 1) Load Condition No. 2: Usual Normal Operating Construction
 - Overturning All resultants were located within the middle 1/3 of the base
 - Sliding Course 5A (bottom course) controlled with FS = 1.87 < 2.0 Per engineering judgment, the use of numerous conservative assumptions, and the existing condition of the dam, we feel that a factor of safety of 1.87 for this load condition is sufficient. All other factors of safety are greater than 2.
 - Bearing Course 5B controlled with σ_{max} = 1.25 ksf. < 2.0 ksf.
- 2) Load Condition No. 3: Unusual Flood Discharge (100-YR)
 - Overturning All resultants were located within the middle 1/2 of the base
 - Sliding Course 5A controlled with FS = 1.87 > 1.7
 - Bearing Course 5B controlled with σ_{max} = 1.39 ksf. < 2.0 ksf.
- 3) Load Condition No. 6: Extreme Normal Operating with Earthquake (MCE)
 - Overturning All resultants were located within the base
 - Sliding Course 5A controlled with FS = 1.24 < 1.3 Per engineering judgment, the use of numerous conservative assumptions, and the existing condition of the dam, we feel that a factor of safety of 1.24 for this load condition is sufficient. All other factors of safety are greater than 1.3.
 - Bearing Course 5B controlled with σ_{max} = 1.32 ksf. < 2.0 ksf.
| | AECOM
Job <u>Sppp Dan</u>
Description <u>Conclusión</u> C | roject No
computed by
hecked by MRW | Page of
Sheet of
Date $5/31/17$
Date
Reference |
|------------|---|--|--|
| | <u>Calculations:</u>
- See Excel for Ca
Check for each
each course | (an lations of
Condition a | each
lang |
| | <u>Condition 2:</u>
Overtwring- al
Sliding - Course
BRC - Course | l resultants in m
S(A) Controls
S(B) Controls (| 1776 Y 3 B
FS= 1.878
The = 1.25/cst |
| \bigcirc | Conditions.
Over - allresul
Sliding - Cause
BRO - Corse | tors within mito
S(A) Controls 1=
S(B) Controls of | 16 Y B
S-1.87
max = 1.39kst |
| | Condition 6:
Over-all resu
Sliding-Caurse 5
BRG-Course 5 | n Itants within 1
5(A) Cantols F
T(B) Cantols 5m | Base
5=1.23 X
ar 1.3.265 |
| \bigcirc | & Namedons conservation
made mranghant 7
we feel that
are acceptable
existing structure | assumptions, i
We analysis,
1.87 222,000
1.233 22,000
Factors of salut | J Ar Mu |

AECOM _____ Project No. <u>604 39145</u> Sheet <u>2</u> Sippo Dam of _ Computed by _____C Bual. STALCTARI Dan Date _ Description ____ Checked by MRW Date 5/31 Reference » ODNR/City of Massillan have decided to remove 4 coarses from existing Sippo Reservoir Dam to Lower headwater · Conduct following checks for each Condition -> Over twning -> Sliding -> Bearing Check Following Conditions for each Course > Usual Coading > Unusual (100-YR Flood) > Extreme (Earthquaker-MCE) References: Design Mannal, Time 30 1995 (COE) (ZM-1110-2-2200 2) ANSHID LRFO 2014 7th Edition 3) Site USIF Field Measurements 1) Army COE Earthquake Bial Manual (S/3//16) ER-1110-2-1806 W/ 2016 Interins Note: each check for each conditions must be completed for each coarse of the Dam

AECOM Page _ _ of _ Sheet 3_ of _ Project No. __ Job _ Description Signa Str. Eml. Computed by CPG-Date Date 5/31 Checked by MEW Reference Dam Qumensions. Taken From Field Measurements on both sides of existing tam and areaged. Assume existing Dam has a vertial back to reservoir (conservative assumption, usually now It be symmetrical but w/ no plans and existing silt backfall, it is not possible to continue symmetry) EL 995.6 K40" 3 0 6-01 0 81-611 3 10'6" EL 987.6 14-011 0

Ave. Dam Cross section (Figure

Stone Blocks	$\gamma = 150 pcf$
Silt/ Backful (Sat	1 757 = 135 pcf
Water	y = 62,9 pct

Assumptions: Silt Backfill will Remain (no tredging) Dan cutoff halls do not prevent drainage Foundation rests on soil No mortar/ continuity butween blocks

Materials:

AECOM Page _____ of ___ Job Sippo Dam Sheet 9 of 13 Project No. __ Computed by ______ Description _____ Loads Date _____SISIT Checked by _____Mew Date 5/31/17 Reference Loads Considered for Etalaation: Note: each course See Ecel For actual calculations Alloads considered on a per A basis Deadload: DL= yhu Note: no earth DL casified Saturated Earth lad. -Assume no dredging behind the dam -Assume ysarsoil = 135 per (conservative) -Assume kg=0.33 Fan = kgrysar h2 Men = Kaysat Ls \bigtriangledown Uplift · Assume uplift acts both normal headnate eller (h.) and tail nater (h) Fup = (hi-hz) yunto w/2 hiewit Mup= (h,-h) yuato w2 · Assume Uplift pressure only acts on bottom 2 courses = During Flood, assume date is fully submerged so Fup= hw ynater; Map= hw ynater

AECOM Page _____ of __ Job Sippi Dam Sheet 5 of 13 Project No. Cen'+ Date _________ eads Computed by ____ Description ____ Date 5/31/17 Checked by _____MeW Reference Floodi 100-1R Plood Blev = 1000,13 · Assume an additional column of water 997 load acting on honzantal sat. V earth load · Assume no "Mare action because of silt buildup let Feht Flood = kaysat he + highartuche MehrFlood = kaysat has + higher ha Eartiquake: Ref: EM-1110-2-1806 & NASATO Soul Site Class D per bonny logs. Zonel Low based on Seismic Maps (1806-Ap.C) - Design Using Response Spectrum (1806- App E) Lisse RS Attached D Dam - Assume rigid structure (Fail in slipping) - Design For MCE (Extreme) PGA = 0.080 = d-. Peq = XW

2) Water: There is no reservoire behind the tam, just Saturated court h. is regard water Force of Norman (active earth enough)

AECOM Page ____ of _ Job Sippo Dam _____ Project No. _____ 0 Sheet __ of _ Load Conditions Computed by CRC Date <u>S/15/</u> Description ____ Date 5/31/17 Checked by MRW Reference Load Conditions: (Figure 4-1) Per COE Considered Load Conditions No. 2 - Normal Operating No. 3 - Unusual Floot (100-41) NO. 6- Extreme EQ (MCE) - Didnot consider MO.5 bc. Flood controls Unusual - Didnot need to consider No.7 Max. Pob. Flood be ham 610' - Considered 2-2 with Uplift 2-B without Uplift typ. all Conditions (See COE Table 4-1) Checks: Overturning Stability: Resultant location (e) = E Monuts See table 4-1 for acceptable lo cations <u>Sliding</u>: FS = <u>TE</u> = <u>Ntande</u> <u>E</u> for etandeling <u>E</u> Honzitorus Seetable for stone/stone $\phi_{s} = 29^{\circ}$ stone/soil $\psi_{s} = 25^{\circ}$ N= Wham = Uplift assame c=0 for cohesia (ess soi). assume no grant/mortar both causes Bearing: 9max = R()+-6e) Sertable 4-1 For acceptable rangile. noFe: e calculated From center, not edge

201.2	Resultant	Minimum	Foundation	Concret	e Stress
Load Condition	at Base	Sliding FS	Bearing Pressure	Compressive	Tensile
Usual	Middle 1/3	2.0	≤ allowable	0.3 f _c	0
Unusual	Middle 1/2	1.7	≤ allowable	0.5 f _c '	0.6 f _c ^{2/3}
Extreme	Within base	1.3	\leq 1.33 × allowable	0.9 f [*]	1.5 f ^{/2/3}

Note: fc is 1-year unconfined compressive strength of concrete. The sliding factors of safety (FS) are based on a comprehensive field investigation and testing program. Concrete allowable stresses are for static loading conditions.

Resultant location =
$$\frac{\Sigma M}{\Sigma V}$$
 (4-1) $FS = \frac{\tau_F}{\tau} = \frac{(\sigma \tan \phi + c)}{\tau}$ (4-2)

The methods for determining the lateral, vertical, and uplift forces are described in Chapter 3.

b. Criteria. When the resultant of all forces acting above any horizontal plane through a dam intersects that plane outside the middle third, a noncompression zone will result. The relationship between the base area in compression and the location of the resultant is shown in Figure 4-2. For usual loading conditions, it is generally required that the resultant along the plane of study remain within the middle third to maintain compressive stresses in the concrete. For unusual loading conditions, the resultant must remain within the middle half of the base. For the extreme load conditions, the resultant must remain sufficiently within the base to assure that base pressures are within prescribed limits.

4-6. Sliding Stability

a. General. The sliding stability is based on a factor of safety (FS) as a measure of determining the resistance of the structure against sliding. The multiple-wedge analysis is used for analyzing sliding along the base and within the foundation. For sliding of any surface within the structure and single planes of the base, the analysis will follow the single plane failure surface of analysis covered in paragraph 4-6e.

b. Definition of sliding factor of safety.

(1) The sliding FS is conceptually related to failure, the ratio of the shear strength ($\tau_{\rm F}$), and the applied shear stress (τ) along the failure planes of a test specimen according to Equation 4-2:

$$FS = \frac{\tau_{\rm F}}{\tau} = \frac{(\sigma \tan \phi + c)}{\tau}$$
(4-2)

where $\tau_{\rm F} = \sigma \tan \phi + c$, according to the Mohr-Coulomb Failure Criterion (Figure 4-3). The sliding FS is applied to the material strength parameters in a manner that places the forces acting on the structure and rock wedges in sliding equilibrium.

(2) The sliding FS is defined as the ratio of the maximum resisting shear (T_F) and the applied shear (T) along the slip plane at service conditions:

$$FS = \frac{T_F}{T} = \frac{(N \tan \phi + cL)}{T}$$
(4-3)

where

- N = resultant of forces normal to the assumed sliding plane
- ϕ = angle of internal friction
- c = cohesion intercept
- L = length of base in compression for a unit strip of dam
- c. Basic concepts, assumptions, and simplifications.

(1) Limit equilibrium. Sliding stability is based on a limit equilibrium method. By this method, the shear force necessary to develop sliding equilibrium is determined for an assumed failure surface. A sliding mode of failure will occur along the presumed failure surface when the applied shear (T) exceeds the resisting shear (T_r) .

AECOM

Project: Sippo Dam

Date: 5/30/2017

Date: 5/15/2017

Calculated: CRG

Checked: MRW

Title: Condition 2 - Usual Loading

headwater elev. = 995.6 tailwater elev. =

Notes & Assumptions:

Moments taken about heel of dam. Uplift assumes that headwater elevation = top of dam elevation & tailwater elevation = bottom of dam elevation.

Calculations:

	nput				Force an	nd Moment Calculat	ions			
Block Width (ft)	Block Height (ft)	Dam Height (ft)	Block Weight (k/ft)	Dam Weight (k/ft)	DL Block Moment (k-ft/ft)	DL Dam Moment (k-ft/ft)	Sat Soil Horiz. Force (k/ft)	Sat Soil Mom (k-ft/ft)	Uplift (k/ft)	Uplift Momer (k-ft/ft)
4	2	2	1.2	1.2	2.4	2.4	0.09	0.06	0.00	0.00
9	2	4	1.8	m	5.4	7.8	0.36	0.48	0.00	0.00
8.5	2	9	2:55	5.55	10.84	18,64	0.80	1.60	0.00	0.00
10.5	1	7	1.58	7.13	8.27	26.91	1.09	2.55	2.29	8.03
14	1	80	2.10	9.23	14.70	41.61	1.43	3.80	3.49	16.31

	Overturning	Condition 2-F	V: Usual Condi	tion with Uplift fro	om Seepage		Sliding	Condition 2-A		Bearing	Conditio	A-C n
Sum Vertical with Uplift (k/ft)	Sum Moment with Uplift (k-ft/ft)	1/3 Base (ft)		Resultant (ft)		2/3 Base (ft)	Ru (k/ft)	Rr (k/ft)	FS	a, (ksf)		o _{all} (ksf)
4.83	21.43	3.50	×	4.43	~	7.00	1.09	2.68	2.45	0.67	v	
5.73	29,10	4.67	v	5.08	v	9.33	1.43	2.67	1.87	0.75	~	2

	Overtu	urning Condition	on 2-B: Usual	Condition without	Uplift		Slidin	g Condition 2-8		Bearing	Conditio	n 2-8
Sum Vertical, No Uplift (k/ft)	Sum Moment, No Uplift (k-ft/ft)	1/3 Base (ft)		Resultant (ft)		2/3 Base (ft)	Ru (k/ft)	Rr (k/ft)	FS	a, (ksf)		σ _{all} (ksf)
e1 1.20	2,46	1.33	v	2.05	v	2.67	60.0	0.67	7.47	0.37		
e 2 3.00	8.28	2.00	v	2.76	v	4.00	0.36	1.66	4.67	0.67		2
e3 5.55	20.24	2.83	v	3.65	×	5.67	0.80	3.08	3.84	0.93		2
e4 7.13	29.45	3.50	v	4.13	v	7.00	1.09	3.95	3.67	111		
e 5 9.23	45.41	4.67	v	4.92	~	9.33	1.43	4.30	3.07	1.75	1	4 0

81

AECOM

Project: Sippo Dam

 Calculated:
 CRG
 Date:
 5/15/2017

 Checked:
 MRW
 Date:
 5/30/2017

Title: Condition 3 - Unusual Loading (100-yr Flood)

puts:	100 YR Flood Elev. =	1000.13	Normal Water Elev. =	995.6	
	headwater elev. =	1000.13	tailwater elev. =	266	
	Ystone =	0.15 kcf	φf, rock-rock =	29 deg	
	Ysarson =	0.135 kcf	Φt, rock-soil =	25 deg	
	Vwater =	0.0624 kcf	OBRG =	2 ksf	
	ka =	0.33			

Notes & Assumptions:

Moments taken about heel of dam. For vertical loading, uplift assumes full dam submersion. Assume dead load of water on dam equals 100 year flood - normal headwater. For horizontal loading, flood water acts as a column of water (with no additional wave pressure) above usual conditions because of the silt build up.

Calculations:

1	put					Force	and Moment Calculati	suor				
Block Width (ft)	Block Height (ft)	Dam Height (ft)	Block Weight (k/ft)	Dam Weight (k/ft)	DL Block Moment (k-ft/ft)	DL Dam Moment (k-ft/ft)	Flood & Soil Horiz. Force (k/ft)	Flood &Sat Soil Mom (k-ft/ft)	DL Flood Water (k/ft)	Mom. Flood Water (k/ft)	Uplift (k/ft)	Uplift Moment h ft/ft
4	2	2	1.2	1.2	2.4	2.4	0.44	0.42	1.13	2.26	0.50	1.00
9	2	4	1.8	ß	5.4	7.8	0.97	1.82	1.70	5.09	1.25	3.24
8.5	2	6	2.55	5.55	10.84	18.64	1.60	4.38	2.40	10.21	2.31	7.75
10.5	1	7	1.58	7.13	8.27	26.91	1.95	6.15	2.97	15.58	2.96	11.19
14	1	80	2.10	9.23	14.70	41.61	2.33	8.29	3.96	27.70	3.84	17.31

	Overturning Ct	ondition 3-A: Ur	nusual Condit	ion with Uplift fre	om Seepage		Sli	ding Condition 3-A		Bear	ng Conditi	on 3-A
Sum Vertical wit Uplift (k/ft)	h Sum Moment with Uplift (k-ft/ft)	1/4 Base (ft)		Resultant (ft)		3/4 Base (ft)	Ru (k/ft)	Rr (k/ft)	Sł	ou (ksf)		σ _{ali} (ksf)
1 1.83	4.09	1.00	v	2.23	v	3.00	0.44	1.02	2.31	0.62	×	2
3.45	11.46	1.50	×	3.32	*	4.50	0.97	1.91	1.96	0.76	v	2
3 5.64	25.47	2.13	v	4.51	~	6.38	1.60	3.13	1.95	0.79	v	2
7.13	37.45	2.63	v	5.25	×	7.88	1.95	3.95	2.02	0.68	v	2
± 5 9.34	60.29	3.50	v	6.45	~	10.50	2.33	4.36	1.87	0.82	~	2

	Overturn	ing Condition 3	-B: Unusual	Condition without	Uplift		Sliv	ding Condition 3-B		Beari	ing Conditio	on 3-8
Sum Vertical, No Uplift (k/ft)	Sum Moment, No Uplift (k-ft/ft)	1/4 Base (ft)		Resultant (ft)		3/4 Base (ft)	Ru (k/ft)	Rr (k/ft)	FS	ou (ksf)		o _{all} (ksf)
2.33	5.08	1.00	~	2.18	v	3.00	0.44	1.29	2.95	0.74	v	2
4.70	14.71	1.50	v	3.13	×	4.50	0.97	2.60	2.68	0.89	v	2
7.95	33.23	2.13	v	4.18	~	6.38	1.60	4.41	2.75	0.98	×	2
10.09	48.64	2.63	v	4.82	~	7.88	1.95	5.59	2.86	1.20	v	2
13.18	77.60	3.50	~	5.89	*	10.50	2.33	6.15	2.64	1.39	~	0

9/B

AECOM

Project: Sippo Dam

5/30/2017

Date:

Checked: MRW

Calculated: CRG

5/15/2017

Date:

Title: Condition 6 - Extreme Condition (Earthquake)

1. there	the development of		and the second s	
'n	neadwater elev. =	9.566	tailwater elev. =	987.6
	Ystone =	0.15 kcf	$\Phi_{i, \text{rack-rach}} =$	29 deg
	Vsat soll =	0.135 kcf	Φ ₁ , rack-sail =	25 deg
	Ywater =	0.0624 kcf	UBRG =	2 ksf
	ka =	0.33	α=	0.08

Moments taken about heel of dam. Notes & Assumptions:

Uplift assumes that headwater elevation = top of dam elevation & tailwater elevation = bottom of dam elevation. Assume no saturated earth additional load due to earthquake, just EQ on dam. Assumed rigid structure for response spectrum coefficient (T = 0).

Calculations:

	h	iput					Force and M	oment Calculations					
	Block Width (ft)	Block Height (ft)	Dam Height (ft)	Block Weight (k/ft)	Dam Weight (k/ft)	DL Block Moment (k-ft/ft)	DL Dam Moment (k-ft/ft)	Sat Soil Horiz. Force (k/ft)	Sat Soil Mom (k-ft/ft)	Uplift (k/ft)	Uplift Moment (k-ft/ft)	Pex Dam (k/ft)	Mex Dam (k-ft/ft)
L asruo	4	2	2	1.2	1.2	2.4	2.4	0.09	0.06	00'0	0.00	0.10	0.10
ourse 2	9	2	4	1.8	9	5.4	7,8	0.36	0.48	0.00	0.00	0.24	0.43
c asuno	8.5	2	9	2,55	5.55	10.84	18.64	0.80	1.60	0.00	00'0	0.44	1.12
ourse 4	10.5	1	7	1.58	7.13	8.27	26.91	1.09	2.55	2.29	8.03	0.57	1.62
ourse 5	14	1	80	2.10	9.23	14.7	41.61	1.43	3.80	3.49	16.31	0.74	2.28

		Overturning Condit	tion 6-A: Extre	ime Condition	with Possible Upl	ift from Seepage		Slidin	g Condition 6-A		Bearing	Condition 6	4
	Sum Vertical with Uplift (k/ft)	Sum Moment with Uplift (k-ft/ft)	Within Base (ft)		Resultant (ft)		Base (ft)	Ru (k/ft)	Rr (k/ft)	FS	ou (ksf)		1.33ơ _{all} (ksf)
ourse 4	4.83	23.05	0.00	~	4.77	v	10.50	1.66	2.68	1.61	0.59	v	2.66
Course 5	5.73	31.38	00.00	~	5.48	~	14.00	2.16	2.67	1.24	0.68	×	2.66

	Overturn	ning Condition	6-B: Extreme (andition without	Uplift		Slidin	g Condition 6-B		Bearin	g Condition (8-8
Sum Vertical, No Uplift (k/ft)	Sum Moment, No Uplift (k-ft/ft)	Within Base (ft)		Resultant (ft)		Base (ft)	Ru (k/ft)	Rr (k/ft)	ES	au (ksf)		1.33d _{all} (ksf)
1.20	2.56	0.00	~	2.13	×	4.00	0.19	0.67	3.59	0.36	×	2.66
3.00	8.71	0.00	~	2.90	v	6.00	0.60	1.66	2.79	0.55	~	2.66
5.55	21.36	0.00	v	3.85	~	8.50	1.25	3.08	2.47	0.84	~	2.66
7.13	31.08	0.00	~	4.36	v	10.50	1.66	3.95	2.38	1.02	~	2.66
9.23	47.68	0.00	~	5.17	~	14.00	2.16	4.30	1.99	1.18	v	2.66

10/13

W/B

CHK: MEW 5/31/17

ER 1110-2-1806 31 May 16

APPENDIX B

Table B-1 HAZARD POTENTIAL CLASSIFICATION FOR CIVIL WORKS PROJECTS

		Category		
Hazard Potential Classification	Direct Loss of Life ²	Lifeline Losses ³	Property Losses⁴	Environmental Losses ⁵
Low	None Expected	No disruption of services – repairs are cosmetic or rapidly repairable damage	Private agricultural lands, equipment, and isolated buildings	Minimal incremental damage
Significant	None Expected	Disruption of essential facilities and access	Major or extensive public and private facilities	Major or extensive mitigation required or impossible to mitigate
High	Probable (one or more)	Disruption of critical facilities and access	Extensive public and private facilities	Extensive mitigation cost or impossible to mitigate

¹Categories are based upon project performance and are not applicable to individual structures within a project.

² Loss of life potential based upon inundation mapping of area downstream of the project. Analyses of loss of life potential should take into account the population at risk, time of flood wave travel, and warning time.

³ Indirect threats to life caused by the interruption of lifeline services due to project failure or operation (*i.e.*, direct loss of (or access to) critical medical facilities).

⁴ Direct economic impact of property damages to project facilities and downstream property and indirect economic impact due to loss of project services (*i.e.*, impact on navigation industry of the loss of a dam and navigation pool or impact upon a community of the loss of water or power supply).

⁵ Environmental impact downstream caused by the incremental flood wave produced by the project failure beyond which would normally be expected for the magnitude flood event under which the failure occurred.

12/13

ER 1110-2-1806 31 May 16

9

ER 1110-2-1806 31 May 16

13/13

CHK: Mew 5/31/

APPENDIX D Seismic Study- Flow Chart

1 qualle

ER 1110-2-1806 31 May 16

APPENDIX E

CHK: MRW 5/31/17 PROGRESSIVE SEISMIC ANALYSIS REQUIREMENTS FOR CONCRETE AND STEEL HYDRAULIC STRUCTURES

Table E-1 shows the progression of seismic analyses required for each phase of project design. Additional guidance concerning these methods of analysis is provided in paragraphs 9e and 9g and in the references in Appendix A. The types of project seismic studies are described in paragraphs 6h and 11.

Seismic Hazard		Ocisitile A	Project S	Stage	
rtogion	Reconna	issance	Feasibility		PED ¹
Low	E	<i>></i>	SCM	\rightarrow	RS ²
Moderate	E SCM ²	$\stackrel{\rightarrow}{\rightarrow}$	SCM RS ²	\rightarrow \rightarrow	RS TH ³
High	SCM RS ²	$\stackrel{\rightarrow}{\rightarrow}$	RS TH ³	\rightarrow \rightarrow	RS⁴ or TH TH³

Note:

- E = Experience of the structural design engineer
- SCM =Seismic coefficient method of analysis
- RS =Response spectrum analysis

TH = Time-history analysis

¹ If the project proceeds directly from feasibility to plans and specifications stage, seismic design documentation must be required for all projects in high seismic hazard region and projects for which a TH analysis is required.

² Seismic loading condition controls design of an unprecedented structure or unusual configuration or adverse foundation conditions.

³ Seismic loading controls the design requiring linear or nonlinear time-history analysis.

⁴RS should be used in high seismic hazard region for the feasibility and PED phases of project development only if it can be demonstrated that phenomena sensitive to frequency content (i.e., soil structure interaction and structure-reservoir interaction) can be adequately modeled in an RS.

Design Maps Summary Report

CHK: MEW 5/31/17

USGS Design Maps Summary Report

User-Specified Input

Report Title Sippo Dam

Wed May 31, 2017 16:12:09 UTC

Building Code Reference Document	2009 NEHRP Recommended Seismic Provisions (which utilizes USGS hazard data available in 2008)
Site Coordinates	40.80405°N, 81.50761°W
Site Soil Classification	Site Class D – "Stiff Soil"
Risk Category	I/II/III
12 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

USGS-Provided Output

$S_s =$	0.128 g	S _{MS} =	0.204 g	S _{DS} =	0.136 g
S ₁ =	0.055 g	S _{M1} =	0.132 g	S _{D1} =	0.088 g

For information on how the S_s and S_1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please view the detailed report.

For PGA_M, T_L, C_{RS}, and C_{R1} values, please view the detailed report.

Although this Information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

2009 NEHRP Recommended Seismic Provisions (40.80405°N, 81.50761°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters and Risk Coefficients

Note: Ground motion values contoured on Figures 22-1, 2, 5, & 6 below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{SUH} and S_{SD}) and 1.3 (to obtain S_{1UH} and S_{1D}). Maps in the Proposed 2015 NEHRP Provisions are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

Figure 22–1: Uniform-Hazard (2% in 50-Year) Ground Motions of 0.2-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B

Figure 22–2: Uniform-Hazard (2% in 50-Year) Ground Motions of 1.0-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B

CHK: Mew 5/31/17

Figure 22-4: Risk Coefficient at 1.0-Second Spectral Response Period

5/31/2017

Design Maps Detailed Report

CHK: MRW 5/31/17

Figure 22–6: Deterministic Ground Motions of 1.0-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B

CHK: MRW 5/31/17

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification Site Class Ve N or N. 5. A. Hard Rock >5,000 ft/s N/A N/A B. Rock 2,500 to 5,000 ft/s N/A N/A C. Very dense soil and soft rock 1,200 to 2,500 ft/s >50 >2,000 psf D. Stiff Soil 600 to 1,200 ft/s 15 to 50 1,000 to 2,000 psf E. Soft clay soil <600 ft/s <15 <1,000 psf Any profile with more than 10 ft of soil having the characteristics; Plasticity index PI > 20, Moisture content w ≥ 40%, and • Undrained shear strength \overline{s}_{u} < 500 psf F. Soils requiring site response See Section 20.3.1 analysis in accordance with Section 21,1 For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Section 11.4.3 — Site Coefficients, Risk Coefficients, and Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameters

Equation (11.4–1):	$C_{RS}S_{SUH} = 0.898 \times 0.142 = 0.128 \text{ g}$

Equation (11.4-2):

 $S_s \equiv$ "Lesser of values from Equations (11.4–1) and (11.4–2)" = 0.128 g

Equation (11.4–3): $C_{Ri}S_{1UH} = 0.919 \times 0.060 = 0.055 \text{ g}$

Equation (11.4-4):

 $S_{1D} = 0.600 \text{ g}$

 $S_{sp} = 1.500 g$

 $S_1 \equiv$ "Lesser of values from Equations (11.4-3) and (11.4-4)" = 0.055 g

https://earthquake.usgs.gov/cn2/designmaps/us/report.php?template=minimal&latitude=40.804048&longitude=-81.507608&siteclass=3&riskcategory=0&edition=...5/9

Site Class	Spect	ral Response A	cceleration Para	meter at Short	Period
	$S_s \le 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S ₅ ≥ 1.25
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Se	ction 11,4,7 of	ASCE 7	

Table 11.4-1: Site Coefficient F,

CHK: MRW 5/31/17

Note: Use straight-line interpolation for intermediate values of S_s

For Site Class = D and $S_s = 0.128 \text{ g}$, $F_a = 1.600$

Table 11.4-2: Site Coefficient F,

Site Class	Spectra	I Response Acce	eleration Paramo	eter at 1–Secon	d Period
	$S_{1} \leq 0.10$	S ₁ = 0.20	$S_1 = 0.30$	$S_1 = 0.40$	$S_i \ge 0.50$
А	0.8	0,8	0.8	0.8	0.8
в	1.0	1.0	1.0	1.0	1.0
С	1,7	1,6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2,4
F		See Se	ction 11.4.7 of	ASCE 7	

Note: Use straight-line interpolation for intermediate values of S₁

For Site Class = D and $S_i = 0.055$ g, $F_v = 2.400$

5/31/2017

Design Maps Detailed Report

CHK: MRW 5/31/1

Equation (11.4-5): $S_{MS} = F_{a}S_{S} = 1.600 \times 0.128 = 0.204 \text{ g}$

Equation (11.4-6):

 $S_{M1} = F_v S_1 = 2.400 \times 0.055 = 0.132 g$

Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4–7):

 $S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 0.204 = 0.136 g$

Equation (11.4-8):

 $S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.132 = 0.088 g$

Section 11.4.5 - Design Response Spectrum

CHK: Mew 5/31/17

The MCE_R response spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

Site	Mappe	d MCE Geometri	ic Mean Peak Gr	ound Acceleratio	on, PGA
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
А	0.8	0,8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1,1	1.0
Е	2.5	1.7	1.2	0.9	0,9
F		See Se	ction 11.4.7 of /	ASCE 7	
	Note: Use straigh	it-line interpola	tion for interme	diate values of F	PGA
	For Site C	Class = D and P	GA = 0.063 g, F	PGA = 1.600	
apped	PGA				PGA = 0.063

Table 11.8-1: Site Coefficient FPGA

Equation (11.8-1):

 $PGA_{M} = F_{PGA}PGA = 1,600 \times 0.063 = 0,101 g$

5/31/2017

Appendix D Design Drawings (Attached)