SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cast-in-place concrete, including concrete materials, mixture design, placement procedures, and finishes.
- B. Related Requirements:
 - 1. Section 031000 "Concrete Forming and Accessories" for form-facing materials, form liners, insulating concrete forms, and waterstops.
 - 2. Section 032000 "Concrete Reinforcing" for steel reinforcing bars and welded-wire reinforcement.
 - 3. Section 033300 "Architectural Concrete" for general building applications of specially finished formed concrete.
 - 4. Section 033543 "Polished Concrete Finishing" for concrete floors scheduled to receive a polished concrete finish.
 - 5. Section 035300 "Concrete Topping" for emery- and iron-aggregate concrete floor toppings.
 - 6. Section 312000 "Earth Moving" for drainage fill under slabs-on-ground.
 - 7. Section 321313 "Concrete Paving" for concrete pavement and walks.
 - 8. Section 321316 "Decorative Concrete Paving" for decorative concrete pavement and walks.

1.2 DEFINITIONS

- A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, other pozzolans, and silica fume; materials subject to compliance with requirements.
- B. Water/Cement Ratio (w/cm): The ratio by weight of water to cementitious materials.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site .
 - 1. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 - a. Contractor's superintendent.
 - b. Independent testing agency responsible for concrete design mixtures.
 - c. Ready-mix concrete manufacturer.
 - d. Concrete Subcontractor.
 - e. Special concrete finish Subcontractor.

- 2. Review the following:
 - a. Special inspection and testing and inspecting agency procedures for field quality control.
 - b. Construction joints, control joints, isolation joints, and joint-filler strips.
 - c. Semirigid joint fillers.
 - d. Vapor-retarder installation.
 - e. Anchor rod and anchorage device installation tolerances.
 - f. Cold and hot weather concreting procedures.
 - g. Concrete finishes and finishing.
 - h. Curing procedures.
 - i. Forms and form-removal limitations.
 - j. Shoring and reshoring procedures.
 - k. Methods for achieving specified floor and slab flatness and levelness.
 - 1. Floor and slab flatness and levelness measurements.
 - m. Concrete repair procedures.
 - n. Concrete protection.
 - o. Initial curing and field curing of field test cylinders (ASTM C31/C31M.)
 - p. Protection of field cured field test cylinders.

1.4 ACTION SUBMITTALS

- A. Product Data: For each of the following.
 - 1. Portland cement.
 - 2. Fly ash.
 - 3. Blended hydraulic cement.
 - 4. Aggregates.
 - 5. Admixtures:
 - a. Include limitations of use, including restrictions on cementitious materials, supplementary cementitious materials, air entrainment, aggregates, temperature at time of concrete placement, relative humidity at time of concrete placement, curing conditions, and use of other admixtures.
 - 6. Fiber reinforcement.
 - 7. Vapor retarders.
 - 8. Curing materials.
 - a. Include documentation from color pigment manufacturer, indicating that proposed methods of curing are recommended by color pigment manufacturer.
 - 9. Joint fillers.
 - 10. Repair materials.
- B. Sustainable Design Submittals:
 - 1. <u><Click to insert sustainable design text for recycled content.></u>
 - 2. <u>Product Certificates:</u> For regional materials, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each regional material.
 - 3. <<u>Click to insert sustainable design text for liquid floor treatments and curing and sealing compounds.</u>>
- C. <a><u>Click to insert sustainable design text for advanced inventory and assessment></u>

- D. Design Mixtures: For each concrete mixture, include the following:
 - 1. Mixture identification.
 - 2. Minimum 28-day compressive strength.
 - 3. Durability exposure class.
 - 4. Maximum w/cm.
 - 5. Calculated equilibrium unit weight, for lightweight concrete.
 - 6. Slump limit.
 - 7. Air content.
 - 8. Nominal maximum aggregate size.
 - 9. Steel-fiber reinforcement content.
 - 10. Synthetic micro-fiber content.
 - 11. Indicate amounts of mixing water to be withheld for later addition at Project site if permitted.
 - 12. Include manufacturer's certification that permeability-reducing admixture is compatible with mix design.
 - 13. Include certification that dosage rate for permeability-reducing admixture matches dosage rate used in performance compliance test.
 - 14. Intended placement method.
 - 15. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
- E. Shop Drawings:
 - 1. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - a. Location of construction joints is subject to approval of the Architect.
- F. Concrete Schedule: For each location of each Class of concrete indicated in "Concrete Mixtures" Article, including the following:
 - 1. Concrete Class designation.
 - 2. Location within Project.
 - 3. Exposure Class designation.
 - 4. Formed Surface Finish designation and final finish.
 - 5. Final finish for floors.
 - 6. Curing process.
 - 7. Floor treatment if any.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For the following:
 - 1. Installer: Include copies of applicable ACI certificates.
 - 2. Ready-mixed concrete manufacturer.
 - 3. Testing agency: Include copies of applicable ACI certificates.
- B. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.

- 2. Admixtures.
- 3. Fiber reinforcement.
- 4. Curing compounds.
- 5. Bonding agents.
- 6. Adhesives.
- 7. Vapor retarders.
- 8. Semirigid joint filler.
- 9. Joint-filler strips.
- 10. Repair materials.
- C. Material Test Reports: For the following, from a qualified testing agency:
 - 1. Portland cement.
 - 2. Fly ash.
 - 3. Blended hydraulic cement.
 - 4. Aggregates.
 - 5. Admixtures:
 - a. Permeability-Reducing Admixture: Include independent test reports, indicating compliance with specified requirements, including dosage rate used in test.
- D. Floor surface flatness and levelness measurements report, indicating compliance with specified tolerances.
- E. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs Project personnel qualified as an ACI-certified Flatwork Technician and Finisher and a supervisor who is a certified ACI Flatwork Concrete Finisher/Technician or an ACI Concrete Flatwork Technician with experience installing and finishing concrete, incorporating permeability-reducing admixtures.
 - 1. Post-Installed Concrete Anchors Installers: ACI-certified Adhesive Anchor Installer.
- B. Ready-Mixed Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.
 - 1. Manufacturer certified in accordance with NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Laboratory Testing Agency Qualifications: A testing agency qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated and employing an ACI-certified Concrete Quality Control Technical Manager.
 - 1. Personnel performing laboratory tests to be an ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician, Grade I. Testing agency laboratory supervisor to be an ACI-certified Concrete Laboratory Testing Technician, Grade II.

- D. Field Quality-Control Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated.
 - 1. Personnel conducting field tests to be qualified as an ACI Concrete Field Testing Technician, Grade 1, in accordance with ACI CPP 610.1 or an equivalent certification program.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Comply with ASTM C94/C94M and ACI 301.

1.8 FIELD CONDITIONS

- A. Cold-Weather Placement: Comply with ACI 301 and ACI 306.1 and as follows.
 - 1. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 2. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 3. Do not use frozen materials or materials containing ice or snow.
 - 4. Do not place concrete in contact with surfaces less than 35 deg F, other than reinforcing steel.
 - 5. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- B. Hot-Weather Placement: Comply with ACI 301 and ACI 305.1, and as follows:
 - 1. Maintain concrete temperature at time of discharge to not exceed 95 deg F.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to furnish replacement sheet vapor retarder/termite barrier material and accessories for sheet vapor retarder/ termite barrier and accessories that do not comply with requirements or that fail to resist penetration by termites within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless modified by requirements in the Contract Documents.

2.2 CONCRETE MATERIALS

- A. <u>Regional Materials</u>: Verify concrete is manufactured within 500 miles of Project site from aggregates and cementitious materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.
- B. <u>Regional Materials:</u> Verify concrete is manufactured within 500 miles of Project site.
- C. Cementitious Materials:
 - 1. Portland Cement: ASTM C150/C150M, Type I Type III, gray.
 - 2. Fly Ash: ASTM C618, Class C or F.
 - 3. Slag Cement: ASTM C989/C989M, Grade 100 or 120.
- D. Normal-Weight Aggregates: ASTM C33/C33M, Class 3M Class 1N coarse aggregate or better, graded. Provide aggregates from a single source.
 - 1. Alkali-Silica Reaction: Comply with one of the following:
 - a. Expansion Result of Aggregate: Not more than 0.04 percent at one-year when tested in accordance with ASTM C1293.
 - b. Expansion Results of Aggregate and Cementitious Materials in Combination: Not more than 0.10 percent at an age of 16 days when tested in accordance with ASTM C1567.
 - c. Alkali Content in Concrete: Not more than 4 lb./cu. yd. for moderately reactive aggregate or 3 lb./cu. yd. for highly reactive aggregate, when tested in accordance with ASTM C1293 and categorized in accordance with ASTM C1778, based on alkali content being calculated in accordance with ACI 301.
 - 2. Maximum Coarse-Aggregate Size: 1 inch nominal.
 - 3. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- E. Lightweight Aggregate: ASTM C330/C330M, 3/4-inch nominal maximum aggregate size.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride in steel-reinforced concrete.
 - 1. Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type D.
 - 2. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
 - 3. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.

H. Water and Water Used to Make Ice: ASTM C94/C94M, potable

2.3 FIBER REINFORCEMENT

- A. Synthetic Macro-Fiber: Synthetic macro-fibers engineered and designed for use in concrete, complying with ASTM C1116/C1116M, Type III, 1 to 2-1/4 inches long.
 - 1. <u>Basis-of-Design Product</u>: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Euclid Chemical Company (The); a subsidiary of RPM International, Inc.
 - b. FullForce by ABC Polymer Industries, LLC.
 - c. Sika Corporation.

2.4 VAPOR RETARDERS

- A. Sheet Vapor Retarder, Class A: ASTM E1745, Class A ; not less than 15 mils thick. Include manufacturer's recommended adhesive or pressure-sensitive tape.
- B. Sheet Vapor Retarder/Termite Barrier: ASTM E1745, Class A, except with maximum watervapor permeance of 0.03 perms; complying with ICC AC380. Include manufacturer's recommended adhesive or pressure-sensitive tape.
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Polyguard Products, Inc.
 - 2. Low-Temperature Flexibility: Pass at minus 15 deg F; ASTM D146/D146M.
 - 3. Puncture Resistance: 224 lbf minimum; ASTM E154/E154M.
 - 4. Water Absorption: 0.1 percent weight-gain maximum after 48-hour immersion at 70 deg F; ASTM D570.
 - 5. Hydrostatic-Head Resistance: 231 feet minimum; ASTM D5385.

2.5 CURING MATERIALS

- A. Water: Potable or complying with ASTM C1602/C1602M.
- B. Clear, Waterborne, Membrane-Forming, Dissipating Curing Compound: ASTM C309, Type 1, Class B.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. ChemMasters, Inc.
 - b. Dayton Superior Corporation.
 - c. Euclid Chemical Company (The); a subsidiary of RPM International, Inc.
 - d. SpecChem, LLC.
- C. Clear, Waterborne, Membrane-Forming, Curing and Sealing Compound: ASTM C1315, Type 1, Class A.

- 1. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ChemMasters, Inc.
 - b. Concrete Sealers USA.
 - c. Dayton Superior Corporation.
 - d. Euclid Chemical Company (The); a subsidiary of RPM International, Inc.

2.6 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D1751, asphalt-saturated cellulosic fiber .
- B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 in accordance with ASTM D2240.
- C. Bonding Agent: ASTM C1059/C1059M, Type II, nonredispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade and class to suit requirements, and as follows:
 - 1. Types I and II, nonload bearing Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
- E. Floor Slab Protective Covering: 8-feet- wide cellulose fabric.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. McTech Group, Inc.

2.7 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C150/C150M portland cement or hydraulic or blended hydraulic cement, as defined in ASTM C219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand, as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psi at 28 days when tested in accordance with ASTM C109/C109M.

- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C150/C150M portland cement or hydraulic or blended hydraulic cement, as defined in ASTM C219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
 - 4. Compressive Strength: Not less than 5000 psi at 28 days when tested in accordance with ASTM C109/C109M.

2.8 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, in accordance with ACI 301.
 - 1. Use a qualified testing agency for preparing and reporting proposed mixture designs, based on laboratory trial mixtures.
- B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash or Other Pozzolans: 25 percent by mass.
 - 2. Total of Fly Ash or Other Pozzolans, Slag Cement, and Silica Fume: 50 percent by mass, with fly ash or pozzolans not exceeding 25 percent by mass and silica fume not exceeding 10 percent by mass.
 - 3. Total of Fly Ash or Other Pozzolans and Silica Fume: 35 percent by mass with fly ash or pozzolans not exceeding 25 percent by mass and silica fume not exceeding 10 percent by mass.
- C. Admixtures: Use admixtures in accordance with manufacturer's written instructions.
 - 1. Use high-range water-reducing or plasticizing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and -retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

2.9 CONCRETE MIXTURES

- A. Class I : Normal-weight concrete used for footings, piers, and all interior concrete not otherwise noted.
 - 1. Exposure Class: ACI 318 F1 S1.
 - 2. Minimum Compressive Strength: 4000 psi at 28 days.
 - 3. Maximum w/cm: 0.45 .
 - 4. Slump Limit: 4 inches, plus or minus 1 inch.

- B. Class II : Normal-weight concrete permanently exposed to weather.
 - 1. Exposure Class: ACI 318 F3.
 - 2. Minimum Compressive Strength: 4000 psi at 28 days.
 - 3. Maximum w/cm: 0.45 .
 - 4. Air Content:
 - a. Exposure Classes F2 and F3: 5.5 percent, plus or minus 1.5 percent at point of delivery for concrete containing 1-1/2-inch nominal maximum aggregate size.
- C. Class V : Normal-weight concrete used for interior slabs-on-ground.
 - 1. Exposure Class: ACI 318 W0.
 - 2. Minimum Compressive Strength: 4000 psi at 28 days.
 - 3. Maximum w/cm: 0.40 .
 - 4. Minimum Cementitious Materials Content: 540 lb/cu. yd. .
 - 5. Air Content:
 - a. Do not use an air-entraining admixture or allow total air content to exceed 3 percent for concrete used in trowel-finished floors.
 - 6. Synthetic Macro-Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than a rate of 4.0 lb/cu. yd. .
- D. Class VI : Normal-weight concrete used for concrete toppings.
 - 1. Exposure Class: ACI 318 W0.
 - 2. Minimum Compressive Strength: 4000 psi at 28 days.
 - 3. Minimum Cementitious Materials Content: 540 lb/cu. yd..
 - 4. Synthetic Macro-Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than a rate of 4.0 lb/cu. yd. .

2.10 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete in accordance with ASTM C94/C94M and ASTM C1116/C1116M, and furnish batch ticket information.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - 1. Before placing concrete, verify that installation of concrete forms, accessories, and reinforcement, and embedded items is complete and that required inspections have been performed.
 - 2. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Provide reasonable auxiliary services to accommodate field testing and inspections, acceptable to testing agency, including the following:
 - 1. Daily access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Secure space for storage, initial curing, and field curing of test samples, including source of water and continuous electrical power at Project site during site curing period for test samples.
 - 4. Security and protection for test samples and for testing and inspection equipment at Project site.

3.3 INSTALLATION OF EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining Work that is attached to or supported by cast-in-place concrete.
 - 1. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of ANSI/AISC 303.
 - 3. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.

3.4 INSTALLATION OF VAPOR RETARDER

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder in accordance with ASTM E1643 and manufacturer's written instructions.
 - 1. Install vapor retarder with longest dimension parallel with direction of concrete pour.
 - 2. Face laps away from exposed direction of concrete pour.
 - 3. Lap vapor retarder over footings and grade beams not less than 6 inches, sealing vapor retarder to concrete.
 - 4. Lap joints 6 inches and seal with manufacturer's recommended tape.
 - 5. Terminate vapor retarder at the top of floor slabs, grade beams, and pile caps, sealing entire perimeter to floor slabs, grade beams, foundation walls, or pile caps.
 - 6. Seal penetrations in accordance with vapor retarder manufacturer's instructions.
 - 7. Protect vapor retarder during placement of reinforcement and concrete.
 - a. Repair damaged areas by patching with vapor retarder material, overlapping damages area by 6 inches on all sides, and sealing to vapor retarder.
- B. Bituminous Vapor Retarders: Place, protect, and repair bituminous vapor retarder in accordance with manufacturer's written instructions.

3.5 JOINTS

- A. Construct joints true to line, with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Coordinate with floor slab pattern and concrete placement sequence.
 - 1. Install so strength and appearance of concrete are not impaired, at locations indicated on Drawings or as approved by Architect.
 - 2. Place joints perpendicular to main reinforcement.
 - a. Continue reinforcement across construction joints unless otherwise indicated.
 - b. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 3. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.
 - 4. Locate joints for beams, slabs, joists, and girders at third points of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 5. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 - 6. Space vertical joints in walls as indicated on Drawings . Unless otherwise indicated on Drawings, locate vertical joints beside piers integral with walls, near corners, and in concealed locations where possible.
 - 7. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 - 8. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Control Joints in Slabs-on-Ground: Form weakened-plane control joints, sectioning concrete into areas as indicated. Construct control joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Sawed Joints: Form control joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random cracks.
- D. Isolation Joints in Slabs-on-Ground: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated on Drawings.
 - 2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface, where joint sealants, specified in Section 079200 "Joint Sealants," are indicated.
 - 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints:
 - 1. Install dowel bars and support assemblies at joints where indicated on Drawings.
 - 2. Lubricate or asphalt coat one-half of dowel bar length to prevent concrete bonding to one side of joint.

F. Dowel Plates: Install dowel plates at joints where indicated on Drawings.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, embedded items, and vapor retarder is complete and that required inspections are completed.
 - 1. Immediately prior to concrete placement, inspect vapor retarder for damage and deficient installation, and repair defective areas.
 - 2. Provide continuous inspection of vapor retarder during concrete placement and make necessary repairs to damaged areas as Work progresses.
- B. Notify Architect and testing and inspection agencies 24 hours prior to commencement of concrete placement.
- C. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect in writing, but not to exceed the amount indicated on the concrete delivery ticket.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- D. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301, but not to exceed the amount indicated on the concrete delivery ticket.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- E. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness.
 - 1. If a section cannot be placed continuously, provide construction joints as indicated.
 - 2. Deposit concrete to avoid segregation.
 - 3. Deposit concrete in horizontal layers of depth not to exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 4. Consolidate placed concrete with mechanical vibrating equipment in accordance with ACI 301.
 - a. Do not use vibrators to transport concrete inside forms.
 - b. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer.
 - c. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity.
 - d. At each insertion, limit duration of vibration to time necessary to consolidate concrete, and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- F. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Do not place concrete floors and slabs in a checkerboard sequence.

- 2. Consolidate concrete during placement operations, so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
- 3. Maintain reinforcement in position on chairs during concrete placement.
- 4. Screed slab surfaces with a straightedge and strike off to correct elevations.
- 5. Level concrete, cut high areas, and fill low areas.
- 6. Slope surfaces uniformly to drains where required.
- 7. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface.
- 8. Do not further disturb slab surfaces before starting finishing operations.

3.7 FINISHING FORMED SURFACES

- A. As-Cast Surface Finishes:
 - 1. ACI 301 Surface Finish SF-1.0: As-cast concrete texture imparted by form-facing material.
 - a. Patch voids larger than 1-1/2 inches wide or 1/2 inch deep.
 - b. Remove projections larger than 1 inch.
 - c. Tie holes do not require patching.
 - d. Surface Tolerance: ACI 117 Class D.
 - e. Apply to concrete surfaces not exposed to public view .
- B. Related Unformed Surfaces:
 - 1. At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a color and texture matching adjacent formed surfaces.
 - 2. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.8 FINISHING FLOORS AND SLABS

- A. Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Trowel Finish:
 - 1. After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel.
 - 2. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance.
 - 3. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 4. Do not add water to concrete surface.
 - 5. Do not apply hard-troweled finish to concrete, which has a total air content greater than 3 percent.
 - 6. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.

- 7. Finish surfaces to the following tolerances, in accordance with ASTM E1155, for a randomly trafficked floor surface:
 - a. Slabs on Ground:
 - 1) Specified overall values of flatness, F_F 35; and of levelness, F_L 25; with minimum local values of flatness, F_F 24; and of levelness, F_L 17.
 - b. Suspended Slabs:
 - 1) Specified overall values of flatness, F_F 35; and of levelness, F_L 20; with minimum local values of flatness, F_F 24; and of levelness, F_L 15.
- C. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thinset method. While concrete is still plastic, slightly scarify surface with a fine broom perpendicular to main traffic route.
 - 1. Coordinate required final finish with Architect before application.
 - 2. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.
- D. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and locations indicated on Drawings.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route.
 - 2. Coordinate required final finish with Architect before application.

3.9 INSTALLATION OF MISCELLANEOUS CONCRETE ITEMS

- A. Filling In:
 - 1. Fill in holes and openings left in concrete structures after Work of other trades is in place unless otherwise indicated.
 - 2. Mix, place, and cure concrete, as specified, to blend with in-place construction.
 - 3. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - 2. Construct concrete bases 6 inches high unless otherwise indicated on Drawings, and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated on Drawings, or unless required for seismic anchor support.
 - 3. Minimum Compressive Strength: 4000 psi at 28 days.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete substrate.
 - 6. Prior to pouring concrete, place and secure anchorage devices.

- a. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- b. Cast anchor-bolt insert into bases.
- c. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items.
 - 1. Cast-in inserts and accessories, as shown on Drawings.
 - 2. Screed, tamp, and trowel finish concrete surfaces.

3.10 CONCRETE CURING

- A. Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
 - 1. Comply with ACI 301 and ACI 306.1 for cold weather protection during curing.
 - 2. Comply with ACI 301 and ACI 305.1 for hot-weather protection during curing.
 - 3. Maintain moisture loss no more than 0.2 lb/sq. ft. x h before and during finishing operations.
- B. Curing Formed Surfaces: Comply with ACI 308.1 as follows:
 - 1. Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces.
 - 2. Cure concrete containing color pigments in accordance with color pigment manufacturer's instructions.
 - 3. If forms remain during curing period, moist cure after loosening forms.
 - 4. If removing forms before end of curing period, continue curing for remainder of curing period, as follows:
 - a. Continuous Fogging: Maintain standing water on concrete surface until final setting of concrete.
 - b. Continuous Sprinkling: Maintain concrete surface continuously wet.
 - c. Absorptive Cover: Pre-dampen absorptive material before application; apply additional water to absorptive material to maintain concrete surface continuously wet.
 - d. Water-Retention Sheeting Materials: Cover exposed concrete surfaces with sheeting material, taping, or lapping seams.
 - e. Membrane-Forming Curing Compound: Apply uniformly in continuous operation by power spray or roller in accordance with manufacturer's written instructions.
 - 1) Recoat areas subject to heavy rainfall within three hours after initial application.
 - 2) Maintain continuity of coating and repair damage during curing period.
- C. Curing Unformed Surfaces: Comply with ACI 308.1 as follows:
 - 1. Begin curing immediately after finishing concrete.
 - 2. Interior Concrete Floors:
 - a. Floors to Receive Floor Coverings Specified in Other Sections: Contractor has option of the following:

- 1) Absorptive Cover: As soon as concrete has sufficient set to permit application without marring concrete surface, install prewetted absorptive cover over entire area of floor.
 - a) Lap edges and ends of absorptive cover not less than 12 inches.
 - b) Maintain absorptive cover water saturated, and in place, for duration of curing period, but not less than seven days.
- 2) Moisture-Retaining-Cover Curing: Cover concrete surfaces with moistureretaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive.
 - a) Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - b) Cure for not less than seven days.
- 3) Ponding or Continuous Sprinkling of Water: Maintain concrete surfaces continuously wet for not less than seven days, utilizing one, or a combination of, the following:
 - a) Water.
 - b) Continuous water-fog spray.
- b. Floors to Receive Penetrating Liquid Floor Treatments: Contractor has option of the following:
 - 1) Absorptive Cover: As soon as concrete has sufficient set to permit application without marring concrete surface, install prewetted absorptive cover over entire area of floor.
 - a) Lap edges and ends of absorptive cover not less than 12 inches.
 - b) Maintain absorptive cover water saturated, and in place, for duration of curing period, but not less than seven days.
 - 2) Moisture-Retaining-Cover Curing: Cover concrete surfaces with moistureretaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive.
 - a) Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - b) Cure for not less than seven days.
 - 3) Ponding or Continuous Sprinkling of Water: Maintain concrete surfaces continuously wet for not less than seven days, utilizing one, or a combination of, the following:
 - a) Water.
 - b) Continuous water-fog spray.
- c. Floors to Receive Polished Finish: Contractor has option of the following:
 - 1) Absorptive Cover: As soon as concrete has sufficient set to permit application without marring concrete surface, install prewetted absorptive cover over entire area of floor.
 - a) Lap edges and ends of absorptive cover not less than 12 inches.
 - b) Maintain absorptive cover water saturated, and in place, for duration of curing period, but not less than seven days.
 - 2) Ponding or Continuous Sprinkling of Water: Maintain concrete surfaces continuously wet for not less than seven days, utilizing one, or a combination of, the following:
 - a) Water.
 - b) Continuous water-fog spray.
- d. Floors to Receive Chemical Stain:

- 1) As soon as concrete has sufficient set to permit application without marring concrete surface, install curing paper over entire area of floor.
- 2) Install curing paper square to building lines, without wrinkles, and in a single length without end joints.
- 3) Butt sides of curing paper tight; do not overlap sides of curing paper.
- 4) Leave curing paper in place for duration of curing period, but not less than 28 days.
- e. Floors to Receive Urethane Flooring:
 - 1) As soon as concrete has sufficient set to permit application without marring concrete surface, install prewetted absorptive cover over entire area of floor.
 - 2) Rewet absorptive cover, and cover immediately with polyethylene moistureretaining cover with edges lapped 6 inches and sealed in place.
 - 3) Secure polyethylene moisture-retaining cover in place to prohibit air from circulating under polyethylene moisture-retaining cover.
 - 4) Leave absorptive cover and polyethylene moisture-retaining cover in place for duration of curing period, but not less than 28 days.
- f. Floors to Receive Curing Compound:
 - 1) Apply uniformly in continuous operation by power spray or roller in accordance with manufacturer's written instructions.
 - 2) Recoat areas subjected to heavy rainfall within three hours after initial application.
 - 3) Maintain continuity of coating, and repair damage during curing period.
 - 4) Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound does not interfere with bonding of floor covering used on Project.
- g. Floors to Receive Curing and Sealing Compound:
 - 1) Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller in accordance with manufacturer's written instructions.
 - 2) Recoat areas subjected to heavy rainfall within three hours after initial application.
 - 3) Repeat process 24 hours later, and apply a second coat. Maintain continuity of coating, and repair damage during curing period.

3.11 TOLERANCES

A. Conform to ACI 117.

3.12 JOINT FILLING

- A. Prepare, clean, and install joint filler in accordance with manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least six month(s).
 - 2. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joints clean and dry.

- C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints.
- D. Overfill joint, and trim joint filler flush with top of joint after hardening.

3.13 CONCRETE SURFACE REPAIRS

- A. Defective Concrete:
 - 1. Repair and patch defective areas when approved by Architect.
 - 2. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of 1 part portland cement to 2-1/2 parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete.
 - a. Limit cut depth to 3/4 inch.
 - b. Make edges of cuts perpendicular to concrete surface.
 - c. Clean, dampen with water, and brush-coat holes and voids with bonding agent.
 - d. Fill and compact with patching mortar before bonding agent has dried.
 - e. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement, so that, when dry, patching mortar matches surrounding color.
 - a. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching.
 - b. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that will affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces:
 - 1. Test unformed surfaces, such as floors and slabs, for finish, and verify surface tolerances specified for each surface.
 - a. Correct low and high areas.
 - b. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 2. Repair finished surfaces containing surface defects, including spalls, popouts, honeycombs, rock pockets, crazing, and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 3. After concrete has cured at least 14 days, correct high areas by grinding.
 - 4. Correct localized low areas during, or immediately after, completing surface-finishing operations by cutting out low areas and replacing with patching mortar.
 - a. Finish repaired areas to blend into adjacent concrete.

- 5. Correct other low areas scheduled to receive floor coverings with a repair underlayment.
 - a. Prepare, mix, and apply repair underlayment and primer in accordance with manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
 - b. Feather edges to match adjacent floor elevations.
- 6. Correct other low areas scheduled to remain exposed with repair topping.
 - a. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations.
 - b. Prepare, mix, and apply repair topping and primer in accordance with manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
- 7. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete.
 - a. Remove defective areas with clean, square cuts, and expose steel reinforcement with at least a 3/4-inch clearance all around.
 - b. Dampen concrete surfaces in contact with patching concrete and apply bonding agent.
 - c. Mix patching concrete of same materials and mixture as original concrete, except without coarse aggregate.
 - d. Place, compact, and finish to blend with adjacent finished concrete.
 - e. Cure in same manner as adjacent concrete.
- 8. Repair random cracks and single holes 1 inch or less in diameter with patching mortar.
 - a. Groove top of cracks and cut out holes to sound concrete, and clean off dust, dirt, and loose particles.
 - b. Dampen cleaned concrete surfaces and apply bonding agent.
 - c. Place patching mortar before bonding agent has dried.
 - d. Compact patching mortar and finish to match adjacent concrete.
 - e. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.14 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a special inspector to perform field tests and inspections and prepare testing and inspection reports.
- B. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
 - 1. Testing agency to be responsible for providing curing container for composite samples on Site and verifying that field-cured composite samples are cured in accordance with ASTM C31/C31M.
 - 2. Testing agency to immediately report to Architect, Contractor, and concrete manufacturer any failure of Work to comply with Contract Documents.
 - 3. Testing agency to report results of tests and inspections, in writing, to Owner, Architect, Contractor, and concrete manufacturer within 48 hours of inspections and tests.

- a. Test reports to include reporting requirements of ASTM C31/C31M, ASTM C39/C39M, and ACI 301, including the following as applicable to each test and inspection:
 - 1) Project name.
 - 2) Name of testing agency.
 - 3) Names and certification numbers of field and laboratory technicians performing inspections and testing.
 - 4) Name of concrete manufacturer.
 - 5) Date and time of inspection, sampling, and field testing.
 - 6) Date and time of concrete placement.
 - 7) Location in Work of concrete represented by samples.
 - 8) Date and time sample was obtained.
 - 9) Truck and batch ticket numbers.
 - 10) Design compressive strength at 28 days.
 - 11) Concrete mixture designation, proportions, and materials.
 - 12) Field test results.
 - 13) Information on storage and curing of samples before testing, including curing method and maximum and minimum temperatures during initial curing period.
 - 14) Type of fracture and compressive break strengths at seven days and 28 days.
- C. Batch Tickets: For each load delivered, submit three copies of batch delivery ticket to testing agency, indicating quantity, mix identification, admixtures, design strength, aggregate size, design air content, design slump at time of batching, and amount of water that can be added at Project site.
- D. Inspections:
 - 1. Headed bolts and studs.
 - 2. Verification of use of required design mixture.
 - 3. Concrete placement, including conveying and depositing.
 - 4. Curing procedures and maintenance of curing temperature.
 - 5. Verification of concrete strength before removal of shores and forms from beams and slabs.
 - 6. Batch Plant Inspections: On a random basis, as determined by Architect.
- E. Concrete Tests: Testing of composite samples of fresh concrete obtained in accordance with ASTM C 172/C 172M to be performed in accordance with the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
 - a. When frequency of testing provides fewer than five compressive-strength tests for each concrete mixture, testing to be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C143/C143M:
 - a. One test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - b. Perform additional tests when concrete consistency appears to change.
 - 3. Slump Flow: ASTM C1611/C1611M:

- a. One test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- b. Perform additional tests when concrete consistency appears to change.
- 4. Air Content: ASTM C231/C231M pressure method, for normal-weight concrete; .
 - a. One test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- 5. Concrete Temperature: ASTM C1064/C1064M:
 - a. One test hourly when air temperature is 40 deg F and below or 80 deg F and above, and one test for each composite sample.
- 6. Unit Weight: ASTM C567/C567M fresh unit weight of structural lightweight concrete.
 - a. One test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
- 7. Compression Test Specimens: ASTM C31/C31M:
 - a. Cast and laboratory cure two sets of two 6-inch by 12-inch or 4-inch by 8-inch cylinder specimens for each composite sample.
 - b. Cast, initial cure, and field cure two sets of two standard cylinder specimens for each composite sample.
- 8. Compressive-Strength Tests: ASTM C39/C39M.
 - a. Test one set of three laboratory-cured specimens at seven days and one set of two specimens at 28 days.
 - b. Test one set of three field-cured specimens at seven days and one set of two specimens at 28 days.
 - c. A compressive-strength test to be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.
- 9. When strength of field-cured cylinders is less than 85 percent of companion laboratorycured cylinders, Contractor to evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength, and no compressive-strength test value falls below specified compressive strength by more than 500 psi if specified compressive strength is 5000 psi, or no compressive strength test value is less than 10 percent of specified compressive strength if specified compressive strength is greater than 5000 psi.
- 11. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- 12. Additional Tests:
 - a. Testing and inspecting agency to make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
 - b. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C42/C42M or by other methods as directed by Architect.
 - 1) Acceptance criteria for concrete strength to be in accordance with ACI 301, Section 1.6.6.3.
- 13. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 14. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

F. Measure floor and slab flatness and levelness in accordance with ASTM E1155 within 72 hours of completion of floor finishing and promptly report test results to Architect.

3.15 **PROTECTION**

- A. Protect concrete surfaces as follows:
 - 1. Protect from petroleum stains.
 - 2. Diaper hydraulic equipment used over concrete surfaces.
 - 3. Prohibit vehicles from interior concrete slabs.
 - 4. Prohibit use of pipe-cutting machinery over concrete surfaces.
 - 5. Prohibit placement of steel items on concrete surfaces.
 - 6. Prohibit use of acids or acidic detergents over concrete surfaces.
 - 7. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.
 - 8. Protect concrete surfaces scheduled to receive surface hardener or polished concrete finish using Floor Slab Protective Covering.

END OF SECTION 033000